Abstract:
Apparatuses and methods, consistent with embodiments herein, are directed to an apparatus having a stretchable substrate and a plurality of nanostructures. While the plurality of nanostructures are adhered to the stretchable substrate, the stretchable substrate and the nanostructures are stretched and/or operate in a stretched mode in which the nanostructures are characterized by a resistance corresponding to a strain imparted due to the stretching. When the substrate is relaxed or the stretching otherwise lessened, the nanostructures continue to be characterized as a function of the strain and the corresponding resistance, with buckled segments of the nanostructures being adhered along a surface of the substrate.
Abstract:
Flexible force/pressure sensors for producing electrical output signals proportional to forces or pressures exerted on the sensor include a thin, elastically deformable foam pad laminated between a pair of electrically conducive fabric sheets. A piezocapacitive embodiment of the sensor utilizes an elastically deformable perforated open-cell polyurethane foam pad preferably saturated with glycerin to increase the capacitance of the sensor. The piezocapacitive sensor section is preferably stacked onto a piezoresistive section having a second open-cell foam pad containing piezoresistive carbon particles to form a hybrid piezocapacitive/piezoresistive sensor. A third, “leaky dielectric” embodiment of a sensor includes a single open-cell foam pad which contains both a dielectric liquid and conductive particles. A low frequency such as d.c. to a few hertz is applied to a sensor to determine piezoresistive response of the sensor to forces or pressures and a higher frequency such as 30 KHz is applied to determine piezocapactive response.
Abstract:
A difference measurement circuit including a first port and a second port for connection to a first set of nodes and a second set of nodes of a sensor unit. The circuit further includes switching units for switching excitation signals emanating from excitation nodes from being applied to the first set of nodes via the first port to being applied to the second set of nodes via the second port and for switching differential measurement signals measured at sensing nodes from being obtained from the second set of nodes via the second port to being obtained from the first set of nodes via the first port. A corresponding method is described. The circuit further includes redundancy testing circuitry for evaluating the similarity or deviation between measurement signals obtained in different states of the switching units.
Abstract:
A force sensor is provided which has a capacitive sensor circuit incorporating a sensor capacitor having variable capacitance Csen arranged so that an output of the capacitive sensor circuit is proportional to 1/Csen.
Abstract:
A capacitively-coupled strain sensor and methods are presented in which the strain on a structure is measured by the varying capacitance created by the displacement of one or more boards attached to the structure.
Abstract:
A safety belt warning system for vehicles comprises a sensor mat for the detection of a force acting on its surface, which includes, for the formation of two electrical capacitors, two dielectric layers which are located one above the other in sandwich fashion and arranged in each case between electrically conductive coats, and which have different compressibility at least in the direction of loading due to force, so that the capacitances of the two capacitors vary differently with a load on the sensor mat.
Abstract:
A sensing device is provided for interacting with a substrate. The sensing device has a force sensor for detecting whether the sensing device is interacting with the substrate and an image sensor for sensing coded data disposed on the substrate. The force sensor has a capacitive sensor circuit incorporating a sensor capacitor having variable capacitance Csen arranged so that an output of the capacitive sensor circuit is proportional to 1/Csen.
Abstract:
A force sensor is provided having a capacitive sensor circuit incorporating a sensor capacitor having a variable capacitance Csen and a reference capacitor relatively arranged so that the capacitive sensor circuit is near saturation when Csen is at a minimum expected value.
Abstract:
A high precision force and displacement measuring device adapted to operate in at least two directions, including signal multiplexing scheme providing multiple signal channels to be transmitted through a single pick-up plate and sense amplifier, while maintaining high isolation between the channels, as well as identical electrical response characteristics of all channels. The device may be used in conjunction with a movable stage (such as on an optical microscope) to perform mechanical measurements on Micro Electro-Mechanical Systems (MEMS) devices.
Abstract:
An electrode layer is formed on the upper surface of a first substrate, and a processing for partially removing the substrate is carried out in order to allow the substrate to have flexibility. To the lower surface of the first substrate, a second substrate is connected. Then, by cutting the second substrate, a working body and a pedestal are formed. On the other hand, a groove is formed on a third substrate. An electrode layer is formed on the bottom surface of the groove. The third substrate is connected to the first substrate so that both the electrodes face to each other with a predetermined spacing therebetween. Finally, the first, second and third substrates are cut off every respective unit regions to form independent sensors, respectively. When an acceleration is exerted on the working body, the first substrate bends. As a result, the distance between both the electrodes changes. Thus, an acceleration exerted is detected by changes in an electrostatic capacitance between both the electrodes.