Abstract:
A light-emitting material is provided allowing a light-emitting body having an excellent low-excitation characteristic and high brightness to be obtained by using a light-emitting material containing a light-emitting base material that emits light through radiative transition of electrons in material atoms, the light-emitting base having nanoparticles added thereto and dispersed therein, the light-emitting material also allowing a reduction in excitation energy and an increase in brightness to be simultaneously achieve, thereby allowing, for a wide range of light-emitting bodies, a reduction in excitation energy and a significant improvement in brightness to be achieved in a simple structure. Also provided is a light-emitting body having the light-emitting material and a light-emitting method.
Abstract:
The inventive luminous vessel has strong bonding and improved adhesion of the current through conductor provided in the luminous container to a sealing member or the like. A luminous vessel has a luminous container, a solid current through conductor made of a metal or a cermet and a sintered body of a molded body containing at least metal powder fixed to the outside of the current through conductor.
Abstract:
A metal vapor discharge lamp and a lighting fixture are downsized without causing breakage of an outer tube because of optimization of a positional relation among the outer tube (34), an inner tube (32), and an arc tube (40). The metal vapor discharge lamp has the arc tube, the inner tube housing the arc tube, and the outer tube housing the inner tube. The positional relation satisfies the relation of 2×A+B≧1.06. In a cross section of the lamp (the cross section of the arc tube is unshown for convenience), A (mm) represents the shortest distance between the arc tube and the inner tube along a line in a radial direction of the inner tube, and B (mm) represents a distance between the inner tube and the outer tube on a line segment C that is extension of the line.
Abstract:
An integral HID reflector lamp may be formed with an HID held in a reflector. An inner element is mechanically coupled to the reflector. The inner element is formed with a first mechanical coupling to mate with the reflector, a second mechanical coupling to mate with a circuit board, and an electrical coupling to at least electrically couple one of the leads to the circuit board. A circuit board has an edge mechanically coupled to the inner element and electrically connected to the leads by an electrical coupling on the inner element. A heat sink spans at least one side of the circuit board and forming an EMI shielding. An outer cover encloses the heat sink, circuit board, and inner element and coupled to the assembly of the reflector, HID lamp, inner element, and heat sink with each elements of the assembly clipped together.
Abstract:
A system, in certain embodiments, includes a high intensity discharge lamp having a composite leg. The composite leg includes a plurality of leg sections coupled together in series. The plurality of leg sections includes different materials, coefficients of thermal expansion, Poisson's ratios, or elastic moduli, or a combination thereof. A method, in certain embodiments, includes enclosing a high intensity discharge within a ceramic arc envelope. The method also includes reducing thermal stresses associated with the high intensity discharge via a composite leg extending outwardly from the ceramic arc envelope. The composite leg includes a plurality of leg sections coupled together in series. The plurality of leg sections includes different materials, coefficients of thermal expansion, Poisson's ratios, or elastic moduli, or a combination thereof.
Abstract:
Aluminum nitride arc discharge vessels having a high total transmittance may be made by annealing the as-sintered AlN vessel in a nitrogen atmosphere, preferably at a temperature of at least about 1850° C. and for a time of at least about 50 hours. The annealing increases the total transmittance of the vessel to greater than 92% in the wavelength region from about 400 nm to about 700 nm. The annealed AlN discharge vessels are useful for lamp applications, such as metal halide lamps, and offer an improved durability and life over polycrystalline alumina (PCA).
Abstract:
An ultraviolet ray light source apparatus includes a discharge lamp in which a pair of electrodes are arranged inside an approximately rod shape arc tube, and a shrunk portion and a sealing portion are formed at both ends of the arc tube, a cooling jacket in which a lamp configuration space extending in parallel with the arc tube and is formed in a light emission section area of the discharge lamp, and a pair of lamp holders which supports the discharge lamp in the lamp configuration space, so that an axis of the arc tube is horizontally supported. The ultraviolet ray light source apparatus further comprises a cooling unit which sends cooling air toward an upper part of the shrunk portion at an end of the arc tube and a discharge section, provided below the shrunk portion, which discharges the cooling air.
Abstract:
A polycrystalline body includes aluminum oxide, magnesium oxide, zirconium oxide, and lutetium oxide. The lutetium oxide is present in an amount of at least 10 ppm of the weight of the ceramic body, and the magnesium and zirconium oxides are present at a molar ratio of from 0.5:1 to 3:1.
Abstract:
A polycrystalline body comprising aluminum oxide, magnesium oxide, hafnium oxide, and yttrium oxide in which alumina grains have an average size of at least 10 μm and wherein the yttrium oxide is present in an amount of at least 6 ppm of the weight of the ceramic body, and the magnesium and hafnium oxides are present at a molar ratio of about 0.5:1 to about 3:1.
Abstract:
The invention relates to a high-pressure discharge lamp, in particular a vehicle headlight high-pressure discharge lamp, having a lamp base, in whose interior is arranged a starting apparatus for the purpose of starting the gas discharge in the high-pressure discharge lamp and which is provided with an electromagnetic shield, and having a discharge vessel which has an end near to the base and an end remote from the base, a power supply line protruding out of the end, remote from the base, of the discharge vessel being passed back to the lamp base and being electrically coupled to the electromagnetic shield. The electromagnetic shield is preferably connected to the ground reference potential of an operating device of the high-pressure discharge lamp.