摘要:
Techniques for controlling a data center cooling system include polling a plurality of control devices associated with the data center cooling system for a respective state of each of the control devices; receiving, from each of the plurality of control devices, a response that includes the respective state; aggregating the responses from the plurality of control devices; executing a control algorithm that includes the aggregated responses as an input to the algorithm and an output that includes a setpoint of the plurality of control devices; and transmitting the output to the plurality of control devices.
摘要:
In accordance with embodiments of the present disclosure, a system may include a structural element and a heat pipe. The structural element may be for mechanically supporting an information handling resource. The heat pipe may be thermally and mechanically coupled to the structural element, such that the heat pipe conducts heat generated by an information handling resource supported by the structural element to the structural element.
摘要:
A heat conveying structure for an electronic device, the heat conveying structure including an evaporating section that has a chamber structure with first fins erected therein, is thermally connected to the electronic device, evaporates a liquid coolant on the surfaces of the first fins to thereby change the liquid coolant to a vapor coolant, and sends out liquid coolant present near the first fins along with the vapor coolant as a gas-liquid two-phase flow coolant, a condensing section that has a chamber structure with second fins erected therein, and changes the gas-liquid two-phase flow coolant in contact with the second fins to a liquid coolant, a vapor pipe that connects the evaporating section and the condensing section, and moves the gas-liquid two-phase flow coolant sent out from the evaporating section to the condensing section, and a liquid pipe that connects the evaporating section and the condensing section.
摘要:
Provided is a pumped loop system (10) for cooling a heat-generating components without relying on a maximum heat load, the system including first and second evaporators (14a-14n) in parallel with one another and first and second valves (22a-22n) upstream of the first and second evaporators respectively, wherein the valves (22a-22n) are controllable to vary the flow rate of fluid to the respective evaporator (14a-14n) based on the amount of flow needed to control the respective heat-generating component. By cooling the heat-generating components without relying on the maximum heat load, adequate flow may be provided to an evaporator operating under a high heat low while reduced flow is provided to an evaporator operating under a low head load.
摘要:
A cooling device of the present invention is a cooling device arranged in a chassis equipped with an upper surface, and comprises: a refrigerant; a vaporizer that includes an evaporative vessel having a side face of a curved surface shape, and performs heat-absorption by making the refrigerant change its phase from a liquid phase state to a vapor phase state; a condenser that performs heat-radiation by making the refrigerant change its phase from a vapor phase state to a liquid phase state; a pipe that connects the vaporizer and the condenser; and a flow path suppression means for suppressing a cooling wind that flows between an area over the evaporative vessel and the upper surface.
摘要:
A cooling device of a computer rack equipped with a back panel including an evacuation zone, toward the exterior of the rack, of air having circulated over electric power components arranged within the computer rack and a rear door in the thickness of which air cooling means is arranged. The cooling device also includes a supporting frame on which the rear door is mounted, molded to surround the air evacuation zone of the computer rack, and removable positioning means of the supporting frame against the back panel of the computer rack.
摘要:
A globally cooled computer system for providing liquid cooling to a plurality of electrical components. The globally cooled computer system includes an electronics unit having a plurality of electronics components attached to a plurality of cards and a card cage for providing structural support to the cards, a fluid management unit for pressurizing fluid within the electronics unit, a reservoir for collecting fluid from the electronics unit, a tubing system for distributing the fluid between the electronics unit and the fluid management unit, and a pressure equalization system connecting the electronics unit and the reservoir to equalize internal pressures between them.
摘要:
According to an embodiment, there is provided a heat spreader including an evaporation portion, a first condenser portion, a working fluid, and a first flow path. The evaporation portion is arranged in a first position. The first condenser portion is arranged in a second position, the second position being the first position. The working fluid evaporates from a liquid phase to a gas phase in the evaporation portion, and condenses from the gas phase to the liquid phase in the first condenser portion. The first flow path is made of a nanomaterial, has hydrophobicity on a surface, and causes the working fluid condensed to the liquid phase in the first condenser portion to flow to the evaporation portion.
摘要:
A globally cooled computer system for providing liquid cooling to a plurality of electrical components. The globally cooled computer system includes an electronics unit having a plurality of electronics components attached to a plurality of cards and a card cage for providing structural support to the cards, a fluid management unit for pressurizing fluid within the electronics unit, a reservoir for collecting fluid from the electronics unit, a tubing system for distributing the fluid between the electronics unit and the fluid management unit, and a pressure equalization system connecting the electronics unit and the reservoir to equalize internal pressures between them.
摘要:
This application provides a heat exchange device and a heat exchange system. The heat exchange device has a first heat exchange mode, and includes a housing, a partition plate, an evaporator, and a compressor. The partition plate divides space inside the housing into an internal circulation cavity and an external circulation cavity. The evaporator and the compressor are located in the internal circulation cavity. A first valve group is disposed between an inlet of the compressor and an outlet of the evaporator. When the first heat exchange mode is used for heat exchange, the evaporator is communicated with the compressor by using the first valve group. In this application, the compressor is disposed in the internal circulation cavity, so that a temperature difference between the compressor and the evaporator is small, thereby reducing a slugging risk of the compressor.