Abstract:
An ignition system for an internal combustion engine comprises a primary current control switch provided in parallel with an exciter coil and the primary of the ignition coil, energized by an exciter coil producing an AC voltage in time with rotation of the engine crank shaft. The primary current control switch is made conductive in advance of the ignition angle to permit a current to flow therethrough, and is made nonconductive at the ignition angle to cause sudden increase in the primary current. The ignition system is characterized in that the core of the ignition coil has a magnetic retentivity and by comprising resistor means for providing a path for a current through the primary in the opposite direction to the current which flows through the primary at the ignition angle.
Abstract:
The overspeed ignition system includes trigger means operative in timed relation to the speed of an internal combustion engine. A controlled switching means operates under the control of the trigger means to pass pulses of energy to a spark ignition unit. An overspeed cutout assembly is provided between the controlled switching means and the spark ignition unit to sense the time interval between the pulses of energy passed by the controlled switching means. When this time interval is less than an internal timed lockout interval determined by the overspeed cutout assembly, the cutout assembly blocks the pulses of energy to the spark ignition unit.The trigger means is formed by a trigger pulse generating assembly having a rotor of circular cross section symmetrically mounted for rotation relative to at least one trigger coil. The rotor is differentially magnetized to prevent pulses of energy from passing to the spark ignition unit when the engine rotates in a reverse direction. This rotor is part of a novel flux conducting flywheel unit which forms part of the flux path for the rotor to enhance the pulse generating capability of the trigger pulse generating assembly.
Abstract:
To provide for ignition advance as the speed of the engine increases, a frequency-dependent circuit formed by a series RC circuit is connected in parallel with the control path of a switch in series with the primary of the magneto ignition coil so that the switch will be controlled to cut off or to open earlier as the speed increases.
Abstract:
Disclosed herein is an ignition system for an internal combustion engine including a capacitor charged by charge power source, a thyristor for discharging the capacitor through the primary of an ignition coil and a magneto AC generator including a signal generating winding for supplying a gate signal to the thyristor. The ignition system is characterized in that rate of change of the magnetic flux interlinked with the signal generating winding has at least two successive local maximum points, so that at least two successive peaks of the same polarity appears in the voltage induced in the signal generating winding by the magnetic flux variation. The waveform of the voltage induced is utilized for ignition angle advance.
Abstract:
An alternator driven capacitive discharge ignition system includes a tachometer circuit monitoring the speed-dependent repetition rate of discharge at an internal trigger power supply, the tachometer circuit causing the triggering threshold bias to be reduced below idle speed to electronically advance the timing. The ignition circuit includes a triggering threshold bias capacitor in series the trigger pulse source and a trigger power supply having a pilot capacitor to alternately fire a pair of ignition silicon controlled rectifiers. The pilot capacitor is charged in series with an RC filter network of a "bucket" tachometer circuit to create a speed signal voltage proportional to engine speed with the pilot capacitor functioning as the bucket capacitor. The speed signal is a voltage which is positive relative to a common signal ground while the threshold bias capacitor voltage is negative relative to such signal ground. The speed signal is applied to the gate of a P-channel depletion-mode junction field-effect transistor (JFET). The source-to-drain channel of the transistor is connected in parallel with the threshold bias capacitor. Below a selected idle speed, the source-to-drain channel resistance provides a maximum bleed current to the threshold bias capacitor, thereby reducing the triggering threshold voltage and creating an automatic spark advance. As the engine speeds up, the source-to-drain resistance increases and virtually eliminate the bleed current at speeds slightly above idle.
Abstract:
This invention relates to a method for preventing premature ignition in an ignition device for the internal combustion engine including a non-contact type ignition circuit for the internal combustion engine, particularly an ignition circuit for the internal combustion engine in which an inductive current in the form of an AC waveform induced in a primary winding of an ignition coil is controlled in its conduction and cut-off by means of a transistor circuit, various auxiliary circuits to be disposed for a desired performance in accordance with the purpose of use and the rate of this circuit, and an ignition circuit for the internal combustion engine in accordance with the present invention, and more particularly to a method for preventing premature ignition in an ignition device for the internal combustion engine comprising a transistor circuit for controlling in conduction and cut-off of a primary short-circuit current in the whole circuit and a trigger circuit for controlling the trigger in said transistor circuit, in which auxiliary circuits are added to said trigger circuit or said transistor circuit in accordance with the purpose of use and requirements of the circuit to attain a desired performance, and disadvantages inherent in the inductive discharge type ignition circuit for the internal combustion engine in the art of the present invention are eliminated.
Abstract:
A device for protecting an ignition device, particularly for motor vehicles, equipped with an internal combustion engine, in which a zener diode controls, by means of at least two transistors the placing in short-circuit of a resistor connected in series with the primary winding of an ignition coil and a control device in such a manner that when the supply voltage of the device exceeds a determined value, the resistor acts in series with the coil, which avoids damage to the ignition device.
Abstract:
In an ignition system in which the spark coil is wound right on the magneto armature and the spark is produced by electronic interruption of a short circuit across the primary winding, the first of a succession of rectified half waves applied to the electronic circuit unit has its amplitude reduced either by insertion of a circuit component in one half wave path of the rectifier to provide damping, or by the configuration of the armature core, or both. The magneto rotor has a U-shaped permanent magnet, the pole faces on the end of the legs of which are rotated past opposed pole faces of the armature core, which has the desired effect if the latter is of asymmetric U-shape or of symmetrical E-shape.
Abstract:
This invention relates to a method for preventing premature ignition in an ignition device for the internal combustion engine including a non-contact type ignition circuit for the internal combustion engine, particularly an ignition circuit for the internal combustion engine in which an inductive current in the form of an AC waveform induced in a primary winding of an ignition coil is controlled in its conduction and cut-off by means of a transistor circuit, various auxiliary circuits to be disposed for a desired performance in accordance with the purpose of use and the rate of this circuit, and an ignition circuit for the internal combustion engine in accordance with the present invention, and more particularly to a method for preventing premature ignition in an ignition device for the internal combustion engine comprising a transistor circuit for controlling in conduction and cut-off of a primary short-circuit current in the whole circuit and a trigger circuit for controlling the trigger in said transistor circuit, in which auxiliary circuits are added to said trigger circuit or said transistor circuit in accordance with the purpose of use and requirements of the circuit to attain a desired performance, and disadvantages inherent in the inductive discharge type ignition circuit for the internal combustion engine in the art of the present invention are eliminated.
Abstract:
To prevent phase-shift and pulse retardation in capacitor ignition systems, supplied with pulses from an a-c generator, the ignition capacitor is included in the armature circuit of the magneto to form, with the armature, an oscillatory circuit; the magneto supplies temporally spaced pulsed of opposite polarity, the first pulse causing oscillation of the oscillatory capacitor-armature circuit which, upon the first oscillation swing, recharges the capacitor with opposite polarity so that the next pulse derived from the magneto will add to the charge placed on the capacitor by the first oscillatory swing, thus preventing spark retardation due to phase shift upon change in engine speed.