Abstract:
Arrangement for transmitting an optical digital WDM signal over an optical transmission link or a passive optical network, the signal (SWDM) including N optical channels matching a given optical frequency grid. The scheme includes supplying the WDM signal (SWDM) to a near end of the optical transmission link or a near end of the passive optical network; receiving the WDM signal (SWDM) at a far end of the optical transmission link or at one or more far ends of the passive optical network; separating the optical channel signals (si(t)) by splitting and bandpass filtering the WDM signal (SWDM) received; and converting the optical channel signals (si(t)) into electrical channel signals using direct optical detection. The signal (SWDM) is created such that neighboring channel signals (si(t)) are orthogonally polarized and are conditioned with specific pre-distortion.
Abstract:
A monitoring apparatus for detecting uncharacteristic short-term power level changes of an optical signal transmitted through an optical fiber, said monitoring apparatus comprising a power level variance calculation unit adapted to calculate a power level variance on the basis of a long-term power level and a current power level of said optical signal and a short-term variance filter adapted to filter transient changes indicated by the calculated power level variance and to generate a trouble occurrence indication indicating an uncharacteristic short-term power level change, if the filtered power level variance exceeds a predetermined power level variance.
Abstract:
A method for bi-directionally transmitting digital optical signals over an optical transmission link in which a first optical transmit signal is created according to a first binary digital signal in such a way that the bit information of the first binary digital signal is included in first sections of the symbol interval of the first optical transmit signal. A second optical transmit signal is created by creating an optical wavelength reuse signal using the first optical transmit signal received at the second end of the optical transmission link, the optical wavelength reuse signal being modulated according to a second digital signal in such a way that the bit information of the second digital signal is included in second sections of the symbol interval of the first optical transmit signal received.
Abstract:
The invention relates to an optical network element, particularly an optical line terminal, OLT, for transmitting and receiving signals wire an optical network that comprises at least one optical fiber link and at least one further optical network element.The optical network element provides a primary optical pumping mean for emitting optical pump power to set at least one optical fiber link. The emitted optical pump power forms at least one gain medium outside the optical network element to provide optical pump power to the network for amplifying the singles to receive so that outside of the domain of the optical network element no electrical energy supply is needed.
Abstract:
A method for provisioning a transport service in a multi-domain multi-layer network comprising at least one client layer network domain and at least one server layer network domain, comprising providing a virtual topology of each of said server layer network domain depending on connectivity requirements set by each of the served client layer network domains for a connectivity across said server layer network domains as at least one segment of said client layer network domain topology; determining an end-to-end path between two client nodes across one or more said server layer network domains based on an overlay topology comprising the virtual topologies provided by said server layer network domains, access links connecting client network nodes of said client layer network domains to said server layer network domains, and inter-domain links interconnecting said server layer network domains in the client layer; and provisioning a transport service via the determined end-to-end path.
Abstract:
The subject matter described herein includes using a path computation element communication protocol (PCEP) as a signaling protocol during dynamic service provisioning in networks. According to one aspect of the subject matter described herein, a network uses a hard state point-to-point protocol as a signaling protocol during dynamic service provisioning in a control plane of the network. In one implementation, the point-to-point protocol is a path computation element communication protocol (PCEP).
Abstract:
A method for compensating a reference frequency shift due to an interaction of resonant light provided by a resonant light source with atoms of an atomic beam crossing a resonant microwave cavity between light interaction zones includes toggling a wavelength of the provided resonant light between a main optical pumping transition, OPT1, and an alternate optical pumping transition, OPT2, of the atoms of the atomic beam while a frequency of the microwave probe signal fed into the microwave cavity is modulated with a frequency modulation depth, FMD. The method further includes computing a wavelength modulation compensation error signal, WM-CES depending on the measured signal amplitudes of Ramsey fringes used to control the frequency of the microwave probe signal fed into the microwave cavity.
Abstract:
A process for removing skew across a set of at least two clients that are members of a particular trunk, the skew removed from a data path from a first communications system component to a second communications system component. The process using a deskew marker to initiate storage of a set of idle primitives in a FIFO for client member of the particular trunk. Releasing in lockstep, idle primitives for the set of FIFO for the set of client members of the particular trunk after receipt of the final deskew marker. Continuing to route subsequent data for the set of clients for that particular trunk through the set of FIFO for the set of clients for that particular trunk. The data path from the first communications system component to the second communications system component may include traversing a fiber optic network
Abstract:
In a method for interrogating at least one optical sensor coupled to an optical path, at least two time-shifted optical signals are fed into the optical path and reflected optical signals of the at least two probe signals created by the at least one optical sensor are detected. Each detected reflected optical signal is assigned to one of the at least one optical sensor and a correct optical frequency is assigned to each detected reflected optical signal. An absolute value or a value range or a change of a value or value range of the parameter to be sensed is determined from the one or more of the following physical conditions: the optical reflection signals, the reflectivity of the at least one optical sensor, and the frequency of each detected optical reflection signal, or from one or more dependencies that link these physical conditions.
Abstract:
The present invention provides a performance monitoring device, an optical signal network with performance monitoring, and a performance monitoring method. The performance monitoring device (100) comprises a coherent receiver (10), an analog-to-digital-converter, ADC (20), a digital signal processing module, DSPM (30), and a noise correction module, NCM (40), the receiver (10) having a second bandwidth that is smaller than the first bandwidth (BW1) such that the receiver (10) is configured to output an electrical analog signal (72) with the second bandwidth based on the received optical signal (71) having the first bandwidth,
the ADC (20), being configured to generate from the electric analog signal (72) a digital input signal (73) with the second bandwidth;
the DSPM (30) being configured to generate a raw performance monitoring metric, RPMM (74), based on the digital input signal (73);
wherein the NCM (40) is configured to generate a performance monitoring metric, PMM (75), based on the digital input signal (73) by compensating distortion in the RPMM (74) caused by the coherent receiver (10) having a smaller bandwidth than the optical signal (71).