Abstract:
An optoelectronic hermetic package comprises a frame defining a hermetic boundary and an electrical feedthrough assembly on the frame. This electrical feedthrough assembly provides electrical connections between signal wire bond areas within the hermetic boundary to electrical contact areas outside the hermetic boundary. Additionally, according to the invention, ground wire bond pad areas are also provided within the hermetic boundary, the ground wire bond pad areas being electrically connected to each other and/or the frame or other ground plane.
Abstract:
An electrostatically operated microelectromechanical system comprises a movable and a stationary structure, with a discharge system that is activated upon pull-in of the movable structure to discharge the voltage across an electrostatic cavity to thereby prevent stiction adhesion of the movable structure to the stationary structure. Specifically, a membrane release structure comprises a mirror optical element. The membrane is separated from a stationary support by an electrostatic cavity. The discharge switch comprises a membrane conductor pad on the membrane and a support conductor pad on the support that conducts a current upon activation of the discharge switch to discharge the electrostatic voltage. Preferably, these pads are metal.
Abstract:
An optical component is adapted for pick-and-place-style installation on an optical submount or bench and compatible with a chuck of a bonder that picks-up the optical component, places it on the optical bench, and then typically solder bonds the optical component to the bench. In the current implementation, this optical component comprises an optical element, such as an optical fiber, lens, or MOEMS device, that is attached to a plastically deformable mounting structure. The optical component has a bench-attach surface that is used to bond the optical component to an optical bench. Further, the optical component has a bonder chuck engagement surface to which a bonder chuck attaches to manipulate the optical component, such as install it, on the optical bench.
Abstract:
A process for patterning dielectric layers of the type typically found in optical coatings in the context of MEMS manufacturing is disclosed. A dielectric coating is deposited over a device layer, which has or will be released, and patterned using a mask layer. In one example, the coating is etched using the mask layer as a protection layer. In another example, a lift-off process is shown. The primary advantage of photolithographic patterning of the dielectric layers in optical MEMS devices is that higher levels of consistency can be achieved in fabrication, such as size, location, and residual material stress. Competing techniques such as shadow masking yield lower quality features and are difficult to align. Further, the minimum feature size that can be obtained with shadow masks is limited to null100 nullm, depending on the coating system geometry, and they require hard contact with the surface of the wafer, which can lead to damage and/or particulate contamination.