Abstract:
Photoresist patterns are formed using a photoresist composition, which includes water, a negative photoresist polymer having a salt-type repeating unit, and a photoacid generator, so that a developing process can be performed not by using conventional TMAH solution but by using water. Additionally, because the main solvent of the composition is water, the disclosed photoresist composition is environment-friendly, and has a low light absorbance at 193 nm and 248 nm, which is useful in a photolithography process using a light source in a far ultraviolet region when high-integrated fine circuits of semiconductor device are manufactured.
Abstract:
Disclosed are an organic anti-reflective coating polymer having a structure represented by the following formula I which is introduced to the top portion of photoresist, its preparation method and an anti-reflective coating composition, in a process for forming ultra-fine patterns of photoresist for photolithography by using 193 nm ArF or 157 nm VUV light source. More particularly, the present invention provides an organic anti-reflective coating polymer capable of protecting a photoresist from amine to improve the stability of a post exposure delay and to minimize pattern distortion caused by a swing phenomenon during a patterning process, its preparation method and an anti-reflective coating composition comprising the same. [formula I] wherein each of m and n is an integer ranging from 5 to 5,000.
Abstract:
The present invention provides a cross-linker monomer of formula 1, a photoresist polymer derived from a monomer comprising the same, and a photoresist composition comprising the photoresist polymer. The cross-linking unit of the photoresist polymer can be hydrolyzed (or degraded or broken) by an acid generated from a photoacid generator on the exposed region. It is believed that this acid degradation of the cross-linking unit increases the contrast ratio between the exposed region and the unexposed region. The photoresist composition of the present invention has improved pattern profile, enhanced adhesiveness, excellent resolution, sensitivity, durability and reproducibility. where A, B, R1, R2, R3, R4, R5, R6 and k are as defined herein.
Abstract:
The present invention provides compounds represented by formulas 1a and 1b′; and photoresist polymers derived from the same. The present inventors have found that photoresist polymers derived from compounds of formulas 1a, 1b, or mixtures thereof, having an acid labile protecting group have excellent durability, etching resistance, reproducibility, adhesiveness and resolution, and as a result are suitable for lithography processes using deep ultraviolet light sources such as KrF, ArF, VUV, EUV, electron-beam, and X-ray, which can be applied to the formation of the ultrafine pattern of 4G and 16G DRAMs as well as the DRAM below 1G: where R1, R2 and R3 are those defined herein.
Abstract:
Photoresist monomers of following Formula 1, photoresist polymers thereof, and photoresist compositions using the same. The photoresist composition has excellent etching resistance, heat resistance and adhesiveness, and is developable in aqueous tetramethylammonium hydroxide (TMAH) solution. In addition, the photoresist composition has low light absorbance at the wavelength of 193 nm, 157 nm and 13 nm, and thus is suitable for a photolithography process using ultraviolet light sources such as VUV (157 nm) and EUV (13 nm) in fabricating a minute circuit for a high integration semiconductor device. wherein, R1, R2, R3, Y, W, m and n are as defined in the specification.
Abstract:
The present invention provides an organic anti-reflective film composition suitable for use in submicrolithography. The composition comprises a compound of chemical formula 11 and a compound of chemical formula 12. The organic anti-reflective film effectively absorbs the light penetrating through the photoresist film coated on top of the anti-reflective film, thereby greatly reducing the standing wave effect. Use of organic anti-reflective films of the present invention allows patterns to be formed in a well-defined, ultrafine configuration, providing a great contribution to the high integration of semiconductor devices. wherein a, b, c, R′, R″, R1, R2, R3, and R4 are those defined herein.
Abstract:
An organic anti-reflective polymer having the following Formula 1, its preparation method, an anti-reflective coating composition comprising the said organic anti-reflective polymer and a preparation method of an anti-reflective coating made therefrom. The anti-reflective coating comprising the polymer eliminates standing waves caused by the optical properties of lower layers on the wafer and by the thickness changes of the photoresist, prevents back reflection and CD alteration caused by the diffracted and reflected light from such lower layers. Such advantages enable the formation of stable ultrafine patterns suitable for 64M, 256M, 1G, 4G, and 16G DRAM semiconductor devices and improve the production yields. Another advantage is the ability to control the k value.
Abstract:
The present invention provides novel bicyclic photoresist monomers, and photoresist copolymer derived from the same. The bicyclic photoresist monomers of the present invention comprise both amine functional group and acid labile protecting group, and are represented by the formula: where m, n, R, V and B are those defined herein. The photoresist composition comprising the photoresist copolymer of the present invention has excellent etching resistance and heat resistance, and remarkably enhanced PED stability (post exposure delay stability).
Abstract:
The present invention provides novel bicyclic photoresist monomers, and photoresist copolymer derived from the same. The bicyclic photoresist monomers of the present invention comprise both amine functional group and acid labile protecting group, and are represented by the formula: where m, n, R, V and B are those defined herein. The photoresist composition comprising the photoresist copolymer of the present invention has excellent etching resistance and heat resistance, and remarkably enhanced PED stability (post exposure delay stability).
Abstract:
The present invention relates to a carboxyl-containing alicyclic compound represented by Chemical Formula 1: wherein, R1 and R2, which may be identical to or different from each other, represent hydrogen or a tert-butyl group; X represents hydrogen, hydroxy or oxygen; and n represents a number from 1 to 3. Compounds of the present invention are useful as monomers in a photoresist resin, and in a process for preparing the same.