Abstract:
A gap-fill polymer for filling fine pattern gaps, which has a low dielectric constant (low-k) and excellent gap filling properties, may consist of a compound formed by condensation polymerization of a first oligomer represented by the formula 1 and a second oligomer represented by the formula 2.
Abstract:
Disclosed herein is a cross-linking polymer that includes a silicon compound and a hydroxyl compound. Also disclosed herein is a composition that includes the cross-linking polymer and an organic solvent. The composition can be used as a part of hard mask film applied over an underlying layer during the manufacture of a semiconductor device. The hard mask film is useful in the formation of a uniform pattern on the device.
Abstract:
Photoresist patterns are formed using a photoresist composition, which includes water, a negative photoresist polymer having a salt-type repeating unit, and a photoacid generator, so that a developing process can be performed not by using conventional TMAH solution but by using water. Additionally, because the main solvent of the composition is water, the disclosed photoresist composition is environment-friendly, and has a low light absorbance at 193 nm and 248 nm, which is useful in a photolithography process using a light source in a far ultraviolet region when high-integrated fine circuits of semiconductor device are manufactured.
Abstract:
The present invention relates to photoresist polymers and photoresist compositions. The disclosed photoresist polymers and photoresist compositions containing the same have excellent transmittance, etching resistance, thermal resistance and adhesive property, low light absorbance and high affinity to a developing solution at a wavelength of 193 nm and 157 nm, thereby improving LER (line edge roughness).
Abstract:
The present invention provides a process for using an amine contamination-protecting top-coating composition. Preferably, the amine contamination-protecting top-coating composition of the present invention comprises an amine contamination-protecting compound. Useful amine contamination-protecting compounds include amine derivatives; amino acid derivatives; amide derivatives; urethane derivatives; urea derivatives; salts thereof; and mixtures thereof. The amine contamination-protecting top-coating composition of the present invention reduces or eliminates problems such as T-topping due to a post exposure delay effect and/or difficulties in forming a fine pattern below 100 nm due to acid diffusion associated with conventional lithography processes involving a photoresist polymer containing an alicyclic main chain using a light source, such as KrF (248 nm), ArF (193 nm), F2 (157 nm), E-beam, ion beam and extremely ultraviolet (EUV).
Abstract:
Photoresist patterns are formed using a photoresist composition, which includes water, a photoacid generator, and a negative photoresist polymer. The polymer includes a basic-type repeating unit represented by Formula (I) (shown below), so that a developing process can be performed not by using conventional TMAH solution but by using water. Additionally, since the main solvent of the composition is water, the disclosed photoresist composition is eco-friendly, and has a low light absorbance at 193 nm and 248 nm, which is useful in a photolithography process using light source in a far ultraviolet region when high-integrated fine circuits of semiconductor device are manufactured. wherein R1, R2, R3, R4, R5, R6, R7, b, c, d and m are defined in the specification.
Abstract:
Photoresist patterns are formed using a photoresist composition, which includes water, a negative photoresist polymer having a salt-type repeating unit, and a photoacid generator, so that a developing process can be performed not by using conventional TMAH solution but by using water. Additionally, because the main solvent of the composition is water, the disclosed photoresist composition is environment-friendly, and has a low light absorbance at 193 nm and 248 nm, which is useful in a photolithography process using a light source in a far ultraviolet region when high-integrated fine circuits of semiconductor device are manufactured.
Abstract:
Disclosed are an organic anti-reflective coating polymer having a structure represented by the following formula I which is introduced to the top portion of photoresist, its preparation method and an anti-reflective coating composition, in a process for forming ultra-fine patterns of photoresist for photolithography by using 193 nm ArF or 157 nm VUV light source. More particularly, the present invention provides an organic anti-reflective coating polymer capable of protecting a photoresist from amine to improve the stability of a post exposure delay and to minimize pattern distortion caused by a swing phenomenon during a patterning process, its preparation method and an anti-reflective coating composition comprising the same. [formula I] wherein each of m and n is an integer ranging from 5 to 5,000.
Abstract:
The present invention provides a cross-linker monomer of formula 1, a photoresist polymer derived from a monomer comprising the same, and a photoresist composition comprising the photoresist polymer. The cross-linking unit of the photoresist polymer can be hydrolyzed (or degraded or broken) by an acid generated from a photoacid generator on the exposed region. It is believed that this acid degradation of the cross-linking unit increases the contrast ratio between the exposed region and the unexposed region. The photoresist composition of the present invention has improved pattern profile, enhanced adhesiveness, excellent resolution, sensitivity, durability and reproducibility. where A, B, R1, R2, R3, R4, R5, R6 and k are as defined herein.
Abstract:
The present invention provides compounds represented by formulas 1a and 1b′; and photoresist polymers derived from the same. The present inventors have found that photoresist polymers derived from compounds of formulas 1a, 1b, or mixtures thereof, having an acid labile protecting group have excellent durability, etching resistance, reproducibility, adhesiveness and resolution, and as a result are suitable for lithography processes using deep ultraviolet light sources such as KrF, ArF, VUV, EUV, electron-beam, and X-ray, which can be applied to the formation of the ultrafine pattern of 4G and 16G DRAMs as well as the DRAM below 1G: where R1, R2 and R3 are those defined herein.