Abstract:
The invention provides a transistor, including: a substrate having a channel region; a source region and a drain region on two ends of the channel region of the substrate respectively; a gate high-K dielectric layer on a top surface of the substrate above the channel region between the source region and the drain region; an interfacial layer under the gate high-K dielectric layer, including a first portion near the source region and a second portion near the drain region, wherein an equivalent oxide thickness of the first portion is larger than that of the second portion. An asymmetric replacement metal gate forms an asymmetric interfacial layer, which is thin at the drain region side and thick at the source region side. At the thin drain region side, the short channel effect is significant and the asymmetric interfacial layer advantageously suppresses the short channel effect. At the thick source region side, the carrier mobility has a large influence on the device, and the asymmetric interfacial layer prevents the carrier mobility from decreasing. Further, the asymmetric replacement metal gate implements an asymmetric metal work function.
Abstract:
The present application discloses a semiconductor structure and a method for manufacturing the same. The semiconductor structure comprises a semiconductor substrate; an epitaxial semiconductor layer formed on two side portions of the semiconductor substrate; a gate stack formed at a central position on the semiconductor substrate and abutting the epitaxial semiconductor layer, the gate comprising a gate conductor layer and a gate dielectric layer which is sandwiched between the gate conductor layer and the semiconductor substrate and surrounding the lateral surfaces of the gate conductor layer; and a sidewall spacer formed on the epitaxial semiconductor layer and surrounding the gate. The method for manufacturing the above semiconductor structure comprises forming raised source/drain regions in the epitaxial semiconductor layer utilizing the sacrificial gate. The semiconductor structure and the method for manufacturing the same can simplify the fabrication process for an ultra-thin SOI transistor and reduce the ON-state resistance and power consumption of the transistor.
Abstract:
A semiconductor structure, a fabrication method, and a design structure for a FinFet. The FinFet includes a dielectric layer, a central semiconductor fin region on the dielectric layer, a first semiconductor seed region on the dielectric layer, and a first strain creating fin region. The first semiconductor seed region is sandwiched between the first strain creating fin region and the dielectric layer. The first semiconductor seed region includes a first semiconductor material. The first strain creating fin region includes the first semiconductor material and a second semiconductor material different than the first semiconductor material. A first atom percent of the first semiconductor material in the first semiconductor seed region is different than a second atom percent of the first semiconductor material in the first strain creating fin region.
Abstract:
The present invention provides a semiconductor structure and a manufacturing method thereof. The method comprises; providing a semiconductor substrate comprising semiconductor devices; depositing a copper diffusion barrier layer on the semiconductor substrate; forming a copper composite layer on the copper diffusion barrier layer; decomposing the copper composite at corresponding positions, where copper interconnection is to be formed, into copper according to the shape of the copper interconnection; and etching off the undecomposed copper composite and the copper diffusion barrier layer underneath, to interconnect the semiconductor devices. The present invention is adaptive for manufacturing interconnection in integrated circuits.
Abstract:
The devices are manufactured by replacement gate process and replacement sidewall spacer process, and both tensile stress in the channel region of NMOS device and compressive stress in the channel region of PMOS device are increased by forming a first stress layer with compressive stress in the space within the first metal gate layer of NMOS and a second stress layer with tensile stress in the space within the second metal gate layer of PMOS, respectively. After formation of the stress layers, sidewall spacers of the gate stacks of PMOS and NMOS devices are removed so as to release stress in the channel regions. In particular, stress structure with opposite stress may be formed on sidewalls of the gate stacks of the NMOS device and PMOS device and on a portion of the source region and the drain region, in order to further increase both tensile stress of the NMOS device and compressive stress of the PMOS device.
Abstract:
The present invention generally relates to a semiconductor structure and method, and more specifically, to a structure and method for reducing floating body effect of silicon on insulator (SOI) metal oxide semiconductor field effect transistors (MOSFETs). An integrated circuit (IC) structure includes an SOI substrate and at least one MOSFET formed on the SOI substrate. Additionally, the IC structure includes an asymmetrical source-drain junction in the at least one MOSFET by damaging a pn junction to reduce floating body effects of the at least one MOSFET.
Abstract:
A device and method is provided that in one embodiment provides a first semiconductor device including a first gate structure on a first channel region, in which a first source region and a first drain region are present on opposing sides of the first channel region, in which a metal nitride spacer is present on only one side of the first channel region. The device further includes a second semiconductor device including a second gate structure on a second channel region, in which a second source region and a second drain region are present on opposing sides of the second channel region. Interconnects may be present providing electrical communication between the first semiconductor device and the second semiconductor device, in which at least one of the first semiconductor device and the second semiconductor device is inverted. A structure having a reverse halo dopant profile is also provided.
Abstract:
A semiconductor structure, such as a CMOS semiconductor structure, includes a field effect device that includes a plurality of source and drain regions that are asymmetric. Such a source region and drain region asymmetry is induced by fabricating the semiconductor structure using a semiconductor substrate that includes a horizontal plateau region contiguous with and adjoining a sloped incline region. Within the context of a CMOS semiconductor structure, such a semiconductor substrate allows for fabrication of a pFET and an nFET upon different crystallographic orientation semiconductor regions, while one of the pFET and the nFET (i.e., typically the pFET) has asymmetric source and drain regions.
Abstract:
A semiconductor device includes a buried insulator layer formed on a bulk substrate; a first type semiconductor material formed on the buried insulator layer, and corresponding to a body region of a field effect transistor (FET); a second type of semiconductor material formed over the buried insulator layer, adjacent opposing sides of the body region, and corresponding to source and drain regions of the FET; the second type of semiconductor material having a different bandgap than the first type of semiconductor material; wherein a source side p/n junction of the FET is located substantially within whichever of the first and the second type of semiconductor material having a lower bandgap, and a drain side p/n junction of the FET is located substantially entirely within whichever of the first and the second type of semiconductor material having a higher bandgap.
Abstract:
An anisotropic wet etch of a semiconductor layer generates facets joined by a ridge running along the center of a pattern in a dielectric hardmask layer on the semiconductor layer. The dielectric hardmask layer is removed and a conformal masking material layer is deposited. Angled ion implantation of Ge, B, Ga, In, As, P, Sb, or inert atoms is performed parallel to each of the two facets joined by the ridge causing damage to implanted portions of the masking material layer, which are removed selective to undamaged portions of the masking material layer along the ridge and having a constant width. The semiconductor layer and a dielectric oxide layer underneath are etched selective to the remaining portions of the dielectric nitride. Employing remaining portions of the dielectric oxide layer as an etch mask, the gate conductor layer is patterned to form gate conductor lines having a constant width.