摘要:
Electrically programmable integrated fuses are provided for low power applications. Integrated fuse devices have stacked structures with a polysilicon layer and a conductive layer formed on the polysilicon layer. The integrated fuses have structural features that enable the fuses to be reliably and efficiently programmed using low programming currents/voltages, while achieving consistency in fusing locations. For example, programming reliability and consistency is achieved by forming the conductive layers with varied thickness and forming the polysilicon layers with varied doping profiles, to provide more precise localized regions in which fusing events readily occur.
摘要:
A method of fabricating a semiconductor device having a metal gate pattern is provided in which capping layers are used to control the relative oxidation rates of portions of the metal gate pattern during a oxidation process. The capping layer may be a multilayer structure and may be etched to form insulating spacers on the sidewalls of the metal gate pattern. The capping layer(s) allow the use of a selective oxidation process, which may be a wet oxidation process utilizing partial pressures of both H2O and H2 in an H2-rich atmosphere, to oxidize portions of the substrate and metal gate pattern while suppressing the oxidation of metal layers that may be included in the metal gate pattern. This allows etch damage to the silicon substrate and edges of the metal gate pattern to be reduced while substantially maintaining the original thickness of the gate insulating layer and the conductivity of the metal layer(s).
摘要:
Provided are an improved structure for measuring gate misalignment and a measuring method thereof. The structure includes an active region and a device isolation region, a first gate group including a plurality of gates extending in one direction at one side of the active region, widths of the gates being the same with one another and lengths of the respective gates overlapping with the active region being different from one another, and a second gate group including a plurality of gates extending in one direction at the other side of the active region, widths of the gates being the same as one another and lengths of the respective gates overlapping with the active region being different from one another.
摘要:
A semiconductor device having a self-aligned silicide layer and a method thereof are provided. The device includes a device isolation layer formed on the substrate to define an active region and a gate pattern crossing over the active region. A spacer insulating layer is formed on both sidewalls of the gate pattern. First and second salicide layers are formed on an upper portion of the gate pattern, and the first salicide layer is formed on the active region between the spacer insulating layer and the device isolation layer. The first and the second salicide layers on the gate pattern are alternately formed to be connected with each other. The first salicide layer is agglomeratedly formed on a narrow gate pattern, and the second salicide layer is formed within interrupted portions of the first salicide layer, thereby forming a patched salicide layer.
摘要:
Methods of forming a semiconductor device having a metal gate electrode include sequentially forming a gate insulator, a gate polysilicon layer and a metal-gate layer on a semiconductor substrate. The metal-gate layer and the gate polysilicon layer are sequentially patterned to form a gate pattern comprising a stacked gate polysilicon pattern and a metal-gate pattern. An oxidation barrier layer is formed to cover at least a portion of a sidewall of the metal-gate pattern.
摘要:
A method of fabricating a semiconductor device that includes dual spacers is provided. A nitrogen atmosphere may be created and maintained in a reaction chamber by supplying a nitrogen source gas. A silicon source gas and an oxygen source gas may then be supplied to the reaction chamber to deposit a silicon oxide layer on a semiconductor substrate, which may include a conductive material layer. A silicon nitride layer may then be formed on the silicon oxide layer by performing a general CVD process. Next, the silicon nitride layer may be etched until the silicon oxide layer is exposed. Because of the difference in etching selectivity between silicon nitride and silicon oxide, portions of the silicon nitride layer may remain on sidewalls of the conductive material layer. As a result, dual spacers formed of a silicon oxide layer and a silicon nitride layer may be formed on the sidewalls.
摘要:
A metal-containing film is formed on a silicon-containing conductive region at a temperature where the metal of the metal-containing film and silicon of the semiconductor substrate react with each other to form a diffusion restraint interface film interposed between the metal-containing film and silicon of the and the semiconductor substrate. The resultant structure is annealed so that metal of the metal-containing film and silicon of the silicon-containing conductive region react with each other to form a metal silicide film.
摘要:
A nickel salicide process includes preparing a substrate having a silicon region and an insulating region containing silicon. Nickel is deposited on the substrate, and the nickel is annealed at a first temperature of 300° C. to 380° C. to selectively form a mono-nickel mono-silicide layer on the silicon region and to leave an unreacted nickel layer on the insulating region. The unreacted nickel layer is selectively removed to expose the insulating region and to leave the mono-nickel mono-silicide layer on the silicon region. Subsequently, the mono-nickel mono-silicide layer is annealed at a second temperature which is higher than the first temperature to form a thermally stable mono-nickel mono-silicide layer and without a phase transition of the mono-nickel mono-silicide layer.