Abstract:
A method in which a node of an Ethernet ring network flushes a filtering database includes operating a timer for delaying flushing of the filtering database when a topology of the ring network is changed, and flushing the filtering database when the timer is terminated. A method in which a node of an Ethernet ring network flushes a filtering database includes flushing the filtering database after receiving a protection switching frame that requests flushing of the filtering database, and forwarding a data frame in a queue state at a node and then forwarding the protection switching frame to an adjacent node. A method in which a node of an Ethernet ring network flushes a filtering database includes flushing the filtering database after receiving a protection switching frame that requests flushing of the filtering database, and deleting a data frame in a queue state at the node.
Abstract:
Provided are a FET-based sensor for detecting an ionic material, an ionic material detecting device including the FET-based sensor, and a method of detecting an ionic material using the FET-based sensor. The FET-based sensor includes: a sensing chamber including a reference electrode and a plurality of sensing FETs; and a reference chamber including a reference electrode and a plurality of reference FETs. The method includes: flowing a first solution into and out of the sensing chamber and the reference chamber of the FET-based sensor; flowing a second solution expected to contain an ionic material into and out of the sensing chamber while continuously flowing the first solution into and out of the reference chamber; measuring a current in a channel region between the source and drain of each of the sensing and reference FETs; and correcting the current of the sensing FETs.
Abstract:
A timestamping apparatus and method are provided. The timestamping apparatus implements timestamping on a synchronization message at a physical layer when the synchronization message is transmitted to the physical layer. At an application layer of the timestamping apparatus, a bit stream including a start indicator bit informing a start of a pseudo random number sequence, the pseudo random number sequence, and an end indicator bit informing an end of the pseudo random number sequence is generated to check whether or not a message received from the physical layer is the synchronization message, and is inserted as signature information of the synchronization message. At the physical layer of the timestamping apparatus, the signature information included in the synchronization message is detected, and timestamping information is generated when the signature information is detected.
Abstract:
Provided are a method and apparatus for selecting pharmacogenomic markers. The method includes calculating evaluation indexes for evaluating the degree of association between genetic markers of genes associated with at least one drug and the drug, and selecting some of the genetic markers based on the calculated evaluation indexes.
Abstract:
Provided is a substrate that is used to produce a microarray, wherein the substrate includes; a fiducial mark disposed on the substrate, and a probe immobilization region disposed on the substrate, wherein a surface of the first fiducial mark is a hydrophobic and a probe immobilization compound is immobilized on the probe immobilization region.
Abstract:
A genetic polymorphism associated with myocardial infarction is provided. More particularly, provided are a polynucleotide including a single nucleotide polymorphism (SNP) or a haplotype associated with myocardial infarction, a polynucleotide hybridized with the polynucleotide, a polypeptide encoded by one of the polynucleotides, an antibody bound to the polypeptide, a microarray and a kit including one of the polynucleotides, a myocardial infarction diagnosis method, a SNP detecting method and a method of screening pharmaceutical compositions for myocardial infarction.
Abstract:
A multiple single nucleotide polymorphism (multi-SNP) marker for cardiovascular disease diagnosis and a method of diagnosing cardiovascular disease are provided. Also, sets of polynucleotides, a microarray, and a kit including the microarray are provided.
Abstract:
Provided is a polynucleotide for diagnosis or treatment of type II diabetes mellitus, including at least 10 contiguous nucleotides of a nucleotide sequence selected from the group consisting of nucleotide sequences of SEQ ID NOS: 1-80 and including a nucleotide at position 101 of the nucleotide sequence, or a complementary polynucleotide thereof.
Abstract translation:提供了用于诊断或治疗II型糖尿病的多核苷酸,包括选自SEQ ID NO:1-80的核苷酸序列的核苷酸序列的至少10个连续核苷酸,并且包含核苷酸的位置101的核苷酸 序列或其互补多核苷酸。
Abstract:
Provided is a method of selecting an optimized SNP marker set from a plurality of SNP markers. The method includes selecting an SNP marker set having a high association from a plurality of SNP markers using set-association, selecting SNP markers having a high association by performing discrimination analysis on arbitrary combinations of the markers included in the SNP marker set, and selecting an optimized SNP marker combination satisfying predetermined selection criteria by using receiver operating characteristics (ROC) curve analysis of arbitrary combinations of the selected SNP markers.
Abstract:
Provided is a method of selecting an optimized SNP marker set from a plurality of SNP markers. The method includes selecting an SNP marker set having a high association from a plurality of SNP markers using set-association, selecting SNP markers having a high association by performing discrimination analysis on arbitrary combinations of the markers included in the SNP marker set, and selecting an optimized SNP marker combination satisfying predetermined selection criteria by using receiver operating characteristics (ROC) curve analysis of arbitrary combinations of the selected SNP markers.