Abstract:
A winding machine (100; 100a, 100b) for wrapping strands of rolled material, such as a bar, a rod, wire or the like, around a reel into coils: a reel (50; 50a, 50b); a base flange (1) defining a first catching recess (6) intended to receive an end of a first strand (17; 17a, 17b); a first cover (9) movable between an open position leaving the first catching recess (6) exposed and a closed position covering the first catching recess (6) to form a closed passage for the end of the first strand (17; 17a, 17b) in order to secure the end of the first strand to the reel (50; 50a, 50b). At least a second element (2) defining a second catching recess (4); and at least a second cover (8) movable between an open position leaving the further catching recess (4) exposed and a closed position covering the second catching recess (4) to form a closed passage for the end of a second strand (27; 27a, 27b) in order to secure the end of the second strand to the reel (50; 50a, 50b).
Abstract:
A monitoring device (6) records variables that are characteristic of operating parameters of a continuous casting mold (1) for casting a metal strand (2). The monitoring device (6) records at least some of the characteristic variables by independently performing measurements during the casting of the metal strand (2). The monitoring device (6) forms groups (G1, G2) of operating parameters and independently tests whether the operating parameters of the respective group (G1, G2) satisfy a respective predetermined stability criterion. The monitoring device (6) accepts the operating parameters into a database (12). The monitoring device (6) determines those data records (11) contained in the database (12) that coincide in their input variables with the basic operating parameters and determines admissible operating parameter ranges for supplementary operating parameters. The monitoring device (6) independently tests whether the supplementary operating parameters lie within the admissible operating parameter ranges.
Abstract:
A roller stand (1) that has a roller stand frame (3) in which working rollers (4, 5), or working rollers (4, 5) and support rollers (8, 9), or working rollers (4, 5), intermediate rollers (10, 11), and support rollers (8, 9) are mounted. Each roller (4, 5, 8, 9, 10, 11) can be rotated about a respective rotational axis (6, 7). In a roller stand (1) without intermediate rollers (10, 11), the working rollers (4, 5) can be moved relative to one another in the direction of the respective rotational axis (6, 7), i.e. axially. In a roller stand (1) with intermediate rollers (10, 11), the same applies to the working rollers (4, 5) or the intermediate rollers (10, 11). Each of the axially movable rollers (4, 5 or 10, 11) has an effective barrel length (L) and a curved contour (R1, R2) which extends over the entire effective barrel length (L). Each of the axially movable rollers (4, 5 or 10, 11) has a contour (R1, R2) made by superimposing a respective base function (B1, B2) with a respective additional function (Z1, Z2). The base functions (B1, B2) and the additional functions (Z1, Z2) are functions of the location (x) in the direction of the respective rotational axis (6, 7). The base functions (B1, B2) are determined so as to complement each other in a specified relative axial position in an unloaded state of the axially movable rollers (4, 5 or 10, 11) and form a convex or concave roller gap profile depending on a movement direction upon being moved from the axial position. The sum of the additional functions (Z1, Z2) is a symmetrical function, which is monotonous on both sides, with respect to the barrel center of the axially movable rollers (4, 5 or 10, 11) in the unmoved state.
Abstract:
A work roll cooling apparatus for a rolling mill includes: at least one chock (200) which is configured to support a work roll (100) in the rolling mill. The work roll (100) has an axis (X) about which it is rotatable. A shroud (300) so positioned adjacent the work roll rolling surface (100a) when the roll is in use to provide a cooling space within which a coolant is brought into contact with the work roll (100). The shroud includes a first part (301) disposed on the chock (200) to provide a predetermined gap (G) between the first part (301) and the work roll (100), a second part (302), and a connection for releasably connecting the first and second parts (301, 302). In a connected condition, the first and second parts (301, 302) are joined to provide the cooling space within the shroud (300), and in a disconnected condition, each of the at least one chock (200), the first part (301) of the shroud (300) and the work roll (100) may be axially removed from the rolling mill and the second part (301) of the shroud (300).
Abstract:
A flat rolled article (2) passes through a cooling device (1) in a transportation direction (x) at the level of a passline (3). Spray bars (5, 6) extend transversely with respect to the transportation direction (x). The spray bars (5, 6) have, as viewed perpendicular to the transportation direction (x), in each case two outer regions (7, 8) and a central region (9) in between. A liquid cooling medium (13) can be fed into the regions (7, 8, 9) via respective dedicated, individually controllable valve devices (10, 11, 12). Flow rate profiles, pertaining to each region may be set, wherein each region (7, 8, 9) is triangular in shape. The central triangle and the two outer triangles combine to form a rectangle.
Abstract:
A rolling mill with a cooling zone for cooling and scissors for cross-cutting metal strips, which are preferably made of steel. A method and a device enables metal strips with thicknesses >4 mm and/or metal strips made of high-strength materials to be cross-cut by means of scissors arranged after a production line and a cooling zone. In the method, the metal strip (6) is cooled in the cooling zone (10) to a specified temperature profile in the longitudinal direction of the metal strip (6) such that the metal strip (6) has a higher temperature in the region of the strip head of the trailing metal strip portion (31) and the strip base of the leading metal strip portion (32) than in the upstream and downstream regions.
Abstract:
A device (1) and a method for holding together and transporting a metal band rolled into a coil (3) after the band is rolled in a coiling station (5). The device (1) includes a removal trolley (20) for receiving the coil (3) in the coiling station (5) and for transporting the coil (3) from the coiling station (5). A coil safety device places a securing sling (40) around the coil (3) fixed on at least part of the circumference, such that the coil (3) is held together by the securing sling (40) and is pressed onto the removal trolley (20).
Abstract:
A device for lubricating the cylinders of a roll stand, in particular for roll nip lubrication in a roll stand for strip-shaped rolling stock. A mixture of water and oil is produced by a mixing and spraying device (1). The mixture is sprayed onto at least one of the cylinders (2) of the roll stand and/or to the surface of the rolling stock (3). The mixing and spraying device (1) include an arrangement of several nozzle mixer units (4). Water is guided thereto by a first supply line (5) and oil is guided thereto by a second supply line (6).
Abstract:
A method for reducing metal oxide containing charge materials (1): reducing the metal oxide containing charge materials (1) in at least two fluidized bed units (RA,RE) by means of a reduction gas (2), wherein at least some of the resulting off-gas (3) is recycled and wherein the metal oxide containing charge materials (1) are conveyed into the fluidized bed unit RE by a propellant gas. Also, apparatus for carrying out the method according to the invention is disclosed.
Abstract:
A rolling mill edger includes a pair of work rolls (1, 2) and a feed roll assembly. The assembly includes one or more driven feed rolls (23) and a drive for the feed rolls. The feed roll assembly is mounted on a moveable (25) mount such that the feed roll assembly is movable by pivoting the assembly between an operative rolling position (54) in the edger and a roll change position (55) out of the edger.