Abstract:
A metamaterial for deflecting an electromagnetic wave is disclosed, which comprises a functional layer. The functional layer comprises a plurality of sheet layers parallel to each other, and each of the sheet layers comprises a sheet-like substrate and a plurality of man-made microstructures arranged in an array on the sheet-like substrate. The sheet-like substrate comprises a plurality of unit blocks, and each of the man-made microstructures and a corresponding one of the unit blocks occupied thereby form a unit cell. Refractive indices of the unit cells arranged in a first direction in each of the sheet layers decrease gradually. Each of the unit cells has an anisotropic electromagnetic parameter. Through use of the metamaterial of the present disclosure, deflection of the electromagnetic wave can be achieved.
Abstract:
Embodiments of the present disclosure relate to an impedance matching component and a hybrid wave-absorbing material. The impedance matching component is disposed between a first medium and a second medium, and comprises a plurality of functional sheet layers. Impedances of the functional sheet layers vary continuously in a stacking direction of the functional sheet layers, with the impedance of a first one of the functional sheet layers being identical to that of the first medium and the impedance of a last one of the functional sheet layers being identical to that of the second medium.
Abstract:
The present disclosure discloses an impedance matching component disposed between a first medium and a second medium, which is formed by stacking a plurality of homogeneous metamaterial sheet layers in a direction perpendicular to surfaces thereof. Each of the metamaterial sheet layers comprises a substrate and a plurality of man-made microstructures attached thereon. A first and last metamaterial sheet layers have impedances identical to those of the first and second media respectively. The man-made microstructures attached on the first metamaterial sheet layer have a first pattern, the man-made microstructures attached on the last metamaterial sheet layer have a second pattern, and the man-made microstructures attached on intermediate ones of the metamaterial sheet layers have patterns that are combinations of the first and second patterns, with the first pattern becoming smaller continuously and the second pattern becoming larger continuously in the stacking direction of the metamaterial sheet layers.
Abstract:
The present disclosure provides a unipolar MIMO antenna, which consists of a plurality of unipolar RF antennae. Each of the unipolar RF antennae comprises a metal sheet and a feeder line. The metal sheet is enchased with a metal microstructure thereon, and the feeder line and the metal sheet are connected in a signal communicative manner. The unipolar MIMO antenna of the present disclosure breaks through the framework of the conventional antenna design and eliminates the complex design of the impedance matching network to ensure miniaturization of the antenna. Thereby, the antenna can be used in a wireless apparatus having a small size, a high transmission efficiency and a high isolation degree among antennae and can satisfy the requirement of a low power consumption in the design of modern communication systems. Additionally, the present disclosure further provides a bipolar MIMO antenna and a hybrid MIMO antenna.
Abstract:
An artificial microstructure made of conductive wires includes a split resonant ring with a split, and two curves. The two curves respectively start from first end and the second end of the split resonant ring and curvedly extend inside the split resonant ring, where the two curves do not intersect with each other, and do not intersect with the split resonant ring.
Abstract:
The present disclosure relates to an electromagnetically transparent metamaterial, which comprises a substrate and a plurality of man-made metal microstructures arranged periodically inside the substrate. When an electromagnetic wave propagates through the metamaterial, each of the man-made metal microstructures is equivalent to two identical two-dimensional (2D) circuits, which are placed respectively in a direction perpendicular to an incident direction of the electromagnetic wave and in a direction parallel to the incident direction of the electromagnetic wave, and each of which comprises an inductor branch and two identical capacitor branches that are symmetrically connected in parallel with the inductor branch. The 2D circuits are associated with a waveband of the electromagnetic wave so that both a dielectric constant and a magnetic permeability of the metamaterial are substantially 1 when the electromagnetic wave propagates through the metamaterial.