Abstract:
The present invention relates to a system and method for authenticating, monitoring, and managing all terminals connected to a wireless/wired network to use Internet. A shared terminal management system comprises a management server, a charging server, a central server, a central authentication G/W server, and a proxy server, and assigns a terminal identification value for every terminal that uses Internet, authenticates terminals by reading and analyzing the assigned terminal identification value, monitors and manages shared terminals used as being connected to one line to classify lines into a basic line and an additional line, and charges for the additional line. The shared terminal identification system for identifying and managing terminals connected to one Internet line comprises a subscriber line authentication unit, a packet collecting unit, a first packet analyzing unit, an element packet transmission unit, a data management unit and a terminal determining unit.
Abstract:
In a method of driving a display panel, a voltage of a first polarity with respect to a reference voltage is outputted to an n-th data line and an (n+1)-th data line (‘n’ is a natural number), respectively, and a voltage of a second polarity with respect to the reference voltage is outputted to an (n+2)-th data line and an (n+3)-th data line, respectively, during an N-th frame (‘N’ is a natural number). Then, a voltage of the first polarity is outputted to the n-th data line, a voltage of the second polarity is outputted to the (n+1)-th data line and the (n+2)-th data line, respectively, and a voltage of the first polarity is outputted to the (n+3)-th data line, during an (N+1)-th frame.
Abstract:
A liquid crystal display (LCD) and a method for repairing a defective pixel in the LCD is provided, where a width of a sustain electrode line is reduced or no sustain electrode line is provided for the purpose of ensuring an increased aperture ratio. The LCD includes a gate line, extending in a first direction, and a data wiring being insulated from the gate line. The data wiring includes a source electrode, a drain electrode, and a data line extending in a second direction. A pixel electrode is connected to the drain electrode via a contact hole, and a sustain electrode line is formed in a substantially the same plane as the gate line and has a sustain electrode overlapped by the contact hole.
Abstract:
A display panel and a method for manufacturing the same are disclosed. The display panel includes: a first substrate, a touch spacer formed on a first substrate, a common electrode formed on the touch spacer, a second substrate opposing the first substrate, a sensing electrode facing the touch spacer on the second substrate and an alignment layer on the sensing electrode or the touch spacer, wherein the alignment layer has a thickness equal to or less than 500 Å.
Abstract:
The present invention is related to a method for neutralizing a malicious ARP spoofing attack generated in a local network and in particular, the present invention provides a method for neutralizing an ARP spoofing attack comprising a step for detecting an ARP spoofing attack based on an ARP request packet generated for an ARP spoofing attack; a step for generating a plurality of counterfeit MAC addresses and dynamically changing MAC addresses of network devices or servers which are to be protected whenever an ARP spoofing attack is generated; and a step for neutralizing an ARP spoofing attack by using a counterfeit MAC address which is capable of neutralizing an ARP spoofing attack adequately.
Abstract:
A color filter substrate includes a substrate, a black matrix disposed on the substrate, a color filter on a sub-pixel area partitioned by the black matrix, a common electrode disposed on the color filter to receive a common voltage, and an anti-reflective layer configured to prevent the reflection of light in the color filter substrate.
Abstract:
A color filter substrate includes a substrate, a black matrix disposed on the substrate, a color filter on a sub-pixel area partitioned by the black matrix, a common electrode disposed on the color filter to receive a common voltage, and an anti-reflective layer configured to prevent the reflection of light in the color filter substrate.
Abstract:
A solar cell includes a semiconductor substrate including a first conductive type, a first amorphous silicon thin film layer disposed on the semiconductor substrate and a second amorphous silicon thin film layer including a second conductive type and disposed on the first amorphous silicon thin film layer. The first amorphous silicon thin film layer includes a first intrinsic silicon thin film layer, a second intrinsic silicon thin film layer facing the semiconductor substrate while interposing the first intrinsic silicon thin film layer therebetween and a first low concentration silicon thin film layer including the second conductive type and disposed between the first intrinsic silicon thin film layer and the second intrinsic silicon thin film layer.
Abstract:
The present invention provides a gas sensor, including: a sensor substrate provided with an electrode; and a thin layer of sensor material formed by spraying a solution in which metal oxide nanoparticles are dispersed onto the sensor substrate. The gas sensor is advantageous in that a sensor material is formed into a porous thin layer containing metal oxide nanoparticles having a large specific surface area, thus realizing high sensitivity on the ppb scale and a high reaction rate. Further, the gas sensor is advantageous in that it can be manufactured at room temperature, and the thickness of a sensor material can be easily adjusted by adjusting the spray time, so that a thin gas sensor or a thick gas sensor can be easily manufactured.
Abstract:
A liquid crystal display is provided. The liquid crystal display includes a first substrate and a second substrate facing and spaced apart from each other in a predetermined distance, in which the second substrate has a first area in which color filters are formed over a plurality of pixel regions and a second area in which the color filters are formed at each of the plurality of pixel regions.