Abstract:
Disclosed herein are method, system, and computer program product embodiments for utilizing multiple traffic identifiers (TIDs) in a single user (SU) transmission. Some embodiments may operate by forming a SU multiple TID data unit that includes first data associated with a first access category and a first TID and second data associated with a second access category and a second TID. Some embodiments may further operate by transmitting the SU multiple TID data unit during a transmission opportunity based on configuration parameters associated with the transmission opportunity.
Abstract:
Wireless communication devices (UEs) may include multiple receive (RX) chains and associated antennas, and at least one transmit (TX) chain co-located with one of the RX chains. The UE may track instant fading of the antenna gain(s) during reception of packets from an associated access point (AP) device to which the UE intends to transmit packets. The UE may also track long term antenna gain(s), using any packets received at the multiple RX chains within the UE. At a switching occasion, a decision is made by the UE whether to switch antennas. If the instant fading detection is based on packets received no later than a specified time period prior to the switching occasion, then the UE may make the switching decision based on the results of the instant fading tracking. Otherwise, the UE may make the switching decision based on the results of the long term antenna gain tracking.
Abstract:
A system and method for partial bandwidth communication. The system includes a device that has a transceiver configured to connect to a network, a memory storing an executable program and a processor. The program causes the processor to perform operations including receiving data to be transmitted to second device, determining if the data uses less than a predetermined bandwidth used as a unit for a carrier aggregation, determining a plurality of sub-bands in the predetermined bandwidth, each sub-band including at least one pilot and a plurality of frequency tones, receiving network information from the second device, the network information indicating a preferred sub-band of the sub-bands, assigning one of the sub-bands to the second device based upon the network information, generating a packet including an indication, the indication indicating the assigned sub-band; transmitting the packet to the second device and transmitting the data in the assigned sub-band.
Abstract:
Embodiments described herein relate to providing reduced power consumption in wireless communication systems, such as 802.11 WLAN systems. Timing information regarding power save opportunities (PSOPs) may be provided in communication frames, which may inform mobile devices of expected frame exchange periods during which they may transition to a Doze state. Additional PSOP information may be included in beacon frames, which may inform mobile devices of expected multicast periods during which they may transition to a Doze state. This may operate to provide improvements in terms of power consumption.
Abstract:
In embodiments, a wireless device, such as a Wi-Fi device, transmits communication signals on secondary channels within an operational bandwidth of a wireless network, concurrent with a transmission from another wireless device on a primary channel. The wireless device may detect that a first frequency band within an operating bandwidth of a wireless network is occupied by a first transmission transmitted by a second wireless device, and determine that a second, different frequency band within the operating bandwidth of the wireless network is not occupied. In response, the wireless device may transmit a second transmission occupying the second frequency band concurrent with the first transmission. The wireless device may set a duration of the second transmission based at least in part on a determination of whether the second wireless device is configured to assess the state of all frequency bands within the operating bandwidth before beginning a subsequent transmission.
Abstract:
In some embodiments, a first wireless device initializes a first threshold and sends a first frame transmission to a second wireless device. When the first wireless device determines that the first frame transmission was successful, it adjusts the first threshold to a second threshold that is greater than the first threshold. Additionally, when the first wireless device determines that the first frame transmission was not successful, the first wireless device adjusts the first threshold to a third threshold that is less than the first threshold. The thresholds can be associated with any measure, including carrier sensitivity and/or energy detection.
Abstract:
This disclosure relates to orthogonal frequency division multiple access (OFDMA) communication in wireless local area networks (WLANs). According to some embodiments, an indication may be transmitted to receiving devices that a first frame is an OFDMA frame. Channel information indicating allocation of bandwidth portions of the first frame to respective receiving devices may also be transmitted to the receiving devices. The first frame may be transmitted to the receiving devices, including transmitting data to each respective receiving device on the bandwidth portion(s) allocated to the respective receiving device.
Abstract:
This disclosure relates to estimating throughput of wireless networks by a wireless device. According to some embodiments, estimated uplink and downlink actual temporal load available to a wireless device in a wireless network may be determined. An uplink data rate and a downlink data rate of the wireless device in the wireless network may be estimated. Based on the estimated uplink and downlink actual temporal load available to the wireless device and the estimated uplink and downlink data rates of the wireless device, the maximum possible uplink throughput and downlink throughput of the wireless device in the wireless network may be estimated. Such throughput estimates may be used to select a wireless network to join from among multiple available wireless networks or to select an initial data rate for an application executing on the wireless device, among possible uses.
Abstract:
Embodiments described herein relate to providing reduced power consumption in wireless communication systems, such as 802.11 WLAN systems. Timing information regarding power save opportunities (PSOPs) may be provided in communication frames, which may inform mobile devices of expected frame exchange periods during which they may transition to a Doze state. Additional PSOP information may be included in beacon frames, which may inform mobile devices of expected multicast periods during which they may transition to a Doze state. This may operate to provide improvements in terms of power consumption.
Abstract:
A wireless local area network (WLAN) device processes received samples for a radio frequency channel in an unlicensed radio frequency band to detect radio frequency interference from a long term evolution (LTE) wireless communication system. The WLAN device performs a correlation of received time-domain samples to detect the presence of a cyclic prefix for an orthogonal frequency division multiplexing (OFDM) symbol used by the LTE wireless communication system. The WLAN device searches for cross-correlation peaks (1) that exceed a peak power threshold value, (2) that a ratio of which exceed a ratio threshold, and (3) that are separated by a time period corresponding to the OFDM symbol. The WLAN device detects the presence of the LTE wireless communication system without decoding the OFDM symbols.