Abstract:
A display may have a first stage such as a color liquid crystal display stage and a second stage such as a monochromatic liquid crystal display stage that are coupled in tandem so that light from a backlight passes through both stages. The dynamic range of the display may be enhanced by using the second stage to perform local dimming operations. The pixel pitch of the second stage may be greater than the pixel pitch of the first stage to ease alignment tolerances and reduce image processing complexity. The color stage and monochromatic stages may share a polarizer. A color filter in the color stage may have an array of red, green, and blue elements or an array of white, red, green, and blue elements. The color stage may be a fringe field display and the monochrome stage may be an in-plane switching display or a twisted nematic stage.
Abstract:
One embodiment describes an electronic display that displays image frames with a first refresh rate or a second refresh rate, in which the second refresh rate is lower than the first refresh rate; a display driver that writes the image frames by applying voltage to a display panel; and a timing controller that receives first image data from an image source, in which the first image data describes a first image frame and a first desired refresh rate equal to the second fresh rate; and that instructs the display driver to apply a first set of voltage polarities to the display panel to display first image frame at the first refresh rate and to apply a second set of voltage polarities to the display the first image frame at the second refresh rate when polarity of inversion imbalance accumulated is equal to polarity of the first set of voltage polarities.
Abstract:
An electronic device may have a display. Inactive portions of the display such as peripheral portions of the display may be masked using an opaque masking layer. An opening may be provided in the opaque masking layer to allow light to pass. For example, a logo may be viewed through an opening in the opaque masking layer and a camera may receive light through an opening in the opaque masking layer. The display may include upper and lower polarizers, a color filter layer, and a thin-film transistor layer. The opaque masking layer may be formed on the upper polarizer, may be interposed between the upper polarizer and the color filter layer, or may be interposed between the color filter layer and the thin-film transistor layer. The upper polarizer may have unpolarized windows for cameras, logos, or other internal structures.
Abstract:
A display may have a layer of liquid crystal material between a color filter layer and a thin-film transistor layer. Column spacer structures may be formed between the color filter layer and the thin-film transistor layer to maintain a desired separation between the color filter and thin-film transistor layers. The column spacer structures may be formed from polymer structures such as photoresist pillars and may include metal pads. The metal pads may be formed on the upper surface of the thin-film transistor layer or the lower surface of the color filter layer. The photoresist pillars may be formed on a surface in the display such as the lower surface of the color filter layer. Column spacer structures may include main spacer structures, subspacer structures, and intermediate thickness spacer structures to enhance pooling mura and light leakage performance.
Abstract:
An electronic device may be provided with a display mounted in a housing. The display may include a liquid crystal display module and a reflective polarizer having an in-plane optical axis. The display may also include a backlight unit that includes a light source, a light guide element, and a reflector film coupled to a backside of the light guide element. The display may also include a light retardation layer such as a quarter wave film. The quarter wave film may be arranged between the reflective polarizer and the reflector film of the backlight unit. During operation of the display, partially polarized light that is output from a front side of the light guide element may have a first component parallel to the in-plane optical axis and a second component perpendicular to the in-plane optical axis of the reflective polarizer. The second component may be reflected from the reflective polarizer.
Abstract:
An electronic device may have a housing in which a display is mounted. A gasket may be mounted in a groove between the display and housing. The gasket may contain an embedded stiffener. Corner brackets may be installed in the corners of the housing. The housing may have inner and outer concentric ribs. Recesses in the housing may be configured to receive the corner brackets. The recesses may be formed between the inner and outer concentric ribs. Gap filling structures such as a foam layer may be interposed between a rear housing wall and a display backlight unit. Display color variations may be corrected by using a backlight unit having an array of light-emitting diodes of different colors. An electrostatic discharge protection layer may be grounded to a housing using conductive tape. Black edge coatings and adhesive-based structures may block stray light. Camera window regions may be supported using adhesive.
Abstract:
An electronic device may include a display having an array of display pixels. Each display pixel may include a red subpixel, a green subpixel, a blue subpixel, and a white subpixel. The display may be controlled using display control circuitry. The display control circuitry may convert frames of display data from a red-green-blue (RGB) color space to a red-green-blue-white (RGBW) color space. The display control circuitry may supply data signals corresponding to a frame of display data in the RGBW color space to the array of display pixels. A frame of display data may be converted from the RGB color space to the RGBW color space based on an amount of color saturation in the frame of display data, based on information identifying what code is running on control circuitry in the electronic device, and/or based on ambient lighting condition information.
Abstract:
Electronic devices may include displays. A display may include display layers having an array of display pixels and a backlight unit that provides backlight illumination to the display pixels. The backlight unit may include a light guide plate that distributes light across the display layers and a stack of optical films that may be used to enhance backlight performance. The optical films may be interposed between the light guide plate and the display layers. The light guide plate may be provided with one or more rounded edges formed from curved surfaces and/or one or more beveled edges formed from chamfered surfaces. Providing the light guide plate with rounded or beveled edges may minimize abrasive contact between the light guide plate and the adjacent optical films. An injection molding tool may be used to mold a light guide plate with rounded or beveled edges.
Abstract:
Systems, methods, and devices for preventing scratching artifacts on a light guide plate of a backlight are provided. In one example, an electronic device may include a processor to generate image data and a display to display the image data. The display may include a liquid crystal display panel and a backlight unit. A light guide plate and a diffuser of the backlight may be separated at least partly by a light guide plate scratch protection component. The light guide plate scratch protection component may be a pattern of molded convex bumps on the light guide plate, a self-healing coating, a nonstick (e.g., Teflon) coating, or some combination of these surfaces.
Abstract:
An electronic device may have a housing in which a display is mounted. A gasket may be mounted in a groove between the display and housing. The gasket may contain an embedded stiffener. Corner brackets may be installed in the corners of the housing. The housing may have inner and outer concentric ribs. Recesses in the housing may be configured to receive the corner brackets. The recesses may be formed between the inner and outer concentric ribs. Gap filling structures such as a foam layer may be interposed between a rear housing wall and a display backlight unit. Display color variations may be corrected by using a backlight unit having an array of light-emitting diodes of different colors. An electrostatic discharge protection layer may be grounded to a housing using conductive tape. Black edge coatings and adhesive-based structures may block stray light. Camera window regions may be supported using adhesive.