Abstract:
Polycrystalline compacts include smaller and larger hard grains that are interbonded to form a polycrystalline hard material. The larger grains may be at least about 150 times larger than the smaller grains. An interstitial material comprising one or more of a boride, a carbide, a nitride, a metal carbonate, a metal bicarbonate, and a non-catalytic metal may be disposed between the grains. The compacts may be used as cutting elements for earth-boring tools such as drill bits, and may be disposed on a substrate. Methods of making polycrystalline compacts include coating smaller hard particles with a coating material, mixing the smaller particles with larger hard particles, and sintering the mixture to form a polycrystalline hard material including interbonded smaller and larger grains. The sizes of the smaller and larger particles may be selected to cause the larger grains to be at least about 150 times larger than the smaller grains.
Abstract:
Polycrystalline compacts include hard polycrystalline materials comprising in situ nucleated smaller grains of hard material interspersed and inter-bonded with larger grains of hard material. The average size of the larger grains may be at least about 250 times greater than the average size of the in situ nucleated smaller grains. Methods of forming polycrystalline compacts include nucleating and catalyzing the formation of smaller grains of hard material in the presence of larger grains of hard material, and catalyzing the formation of inter-granular bonds between the grains of hard material. For example, nucleation particles may be mixed with larger diamond grains, a carbon source, and a catalyst. The mixture may be subjected to high temperature and high pressure to form in smaller diamond grains using the nucleation particles, the carbon source, and the catalyst, and to catalyze formation of diamond-to-diamond bonds between the smaller and larger diamond grains.
Abstract:
A cutting element for use in a drilling bit and/or milling bit having a cutter body made of a substrate having an upper surface, and a superabrasive layer overlying the upper surface of the substrate. The cutting element further including a sleeve extending around a portion of a side surface of the superabrasive layer and a side surface of the substrate, wherein the sleeve exerts a radially compressive force on the superabrasive layer.
Abstract:
An abrasive article including a material including an abrasive material and a filler material having an average negative coefficient of thermal expansion (CTE) within a range of temperatures between about 70K to about 1500K.
Abstract:
Grains of superabrasive material may be infiltrated with a molten metal alloy at a relatively low temperature, and the molten metal alloy may be solidified within interstitial spaces between the grains of superabrasive material to form a solid metal alloy having the grains of superabrasive material embedded therein. The solid metal alloy with the grains of superabrasive material embedded therein may be subjected to a high pressure and high temperature process to form a polycrystalline superabrasive material. A polycrystalline superabrasive material also may be formed by depositing material on surfaces of grains of superabrasive material in a chemical vapor infiltration process to form a porous body, which then may be subjected to a high pressure and high temperature process. Polycrystalline compacts and cutting elements including such compacts may be formed using such methods.
Abstract:
Cutting elements, earth-boring drill bits having such cutting elements and related methods include a cutting element having a superabrasive table positioned on a substrate, and at least one recessed surface in a cutting face of the superabrasive table.
Abstract:
A superabrasive cutting element including a diamond or other superabrasive material table having a peripheral cutting edge defined by at least one chamfer between a cutting face and a side surface of the table, an arcuate surface extending between the cutting face and an innermost chamfer of the at least one chamfer and a sharp, angular transition between an outermost chamfer of the at least one chamfer and the side surface. Methods of producing such superabrasive cutting elements and drill bits equipped with such superabrasive cutting elements are also disclosed.
Abstract:
Polycrystalline compacts include smaller and larger hard grains that are interbonded to form a polycrystalline hard material. The larger grains may be at least about 150 times larger than the smaller grains. An interstitial material comprising one or more of a boride, a carbide, a nitride, a metal carbonate, a metal bicarbonate, and a non-catalytic metal may be disposed between the grains. The compacts may be used as cutting elements for earth-boring tools such as drill bits, and may be disposed on a substrate. Methods of making polycrystalline compacts include coating smaller hard particles with a coating material, mixing the smaller particles with larger hard particles, and sintering the mixture to form a polycrystalline hard material including interbonded smaller and larger grains. The sizes of the smaller and larger particles may be selected to cause the larger grains to be at least about 150 times larger than the smaller grains.
Abstract:
Methods for forming cutting elements, methods for forming polycrystalline compacts, and related polycrystalline compacts are disclosed. Grains of a hard material are subjected to a high-pressure, high-temperature process to form a polycrystalline compact. Inclusion of at least one relatively quick spike in system pressure or temperature during an otherwise plateaued temperature or pressure stage accommodates formation of inter-granular bonds between the grains. The brevity of the peak stage may avoid undesirable grain growth. Embodiments of the methods may also include at least one of oscillating at least one system condition (e.g., pressure, temperature) and subjecting the grains to ultrasonic or mechanical vibrations. A resulting polycrystalline compact may include a high density of inter-granularly bonded hard material with a minimized amount of catalyst material, and may provide improved thermal stability, wear resistance, toughness, and behavior during use of a cutting element incorporating the polycrystalline compact.
Abstract:
A substance includes diamond particles having a maximum linear dimension of less than about 1 μm and an organic compound attached to surfaces of the diamond particles. The organic compound may include a surfactant or a polymer. A method of forming a substance includes exposing diamond particles to an organic compound, and exposing the diamond particles in the presence of the organic compound to ultrasonic energy. The diamond particles may have a maximum linear dimension of less than about 1 μm. A composition includes a liquid, a plurality of diamond nanoparticles dispersed within the liquid, and an organic compound attached to surfaces of the diamond nanoparticles. A method includes mixing a plurality of diamond particles with a solution comprising a liquid solvent and an organic compound, and exposing the mixture including the plurality of diamond nanoparticles and the solution to ultrasonic energy.