Abstract:
Novel phosphorescent heteroleptic iridium complexes with phenylpyridine and dibenzo-containing ligands are provided. The disclosed compounds have low sublimation temperatures that allow for ease of purification and fabrication into a variety of OLED devices.
Abstract:
Organometallic compounds comprising a phenylquinoline or phenylisoquinoline ligand having the quinoline or isoquinoline linked to the phenyl ring of the phenylquinoline or phenylisoquinoline, respectively, via two carbon atoms. These compounds also comprise a substituent other than hydrogen and deuterium on the quinoline, isoquinoline or linker. These compounds may be used as red emitters in phosphorescent OLEDs. In particular, these compounds may provide stable, narrow and efficient red emission.
Abstract:
Compounds that have agonist activity at one or more of the S1P receptors are provided. The compounds are sphingosine analogs that, after phosphorylation, can behave as agonists at S1P receptors.
Abstract:
Organometallic compounds comprising a germanium-containing substituent are provided. The compounds may be used in organic light emitting devices to provide improved device efficiency, line shape and lifetime. In particular, the compounds comprise a phenylquinoline or phenylisoquinoline ligand having a germanium-containing substituent on the quinoline or isoquinoline portion of the ligand. These compounds may be advantageously used as red emitters in the emissive layer of organic light emitting devices.
Abstract:
Compounds comprising a metal complex having novel ligands are provided. In particular, the compound is an iridium complex comprising novel aza DBX ligands. The compounds may be used in organic light emitting devices, particularly as emitting dopants, providing improved efficiency, low operating voltage, and long lifetime.
Abstract:
An organic light emitting device is provided. The device has an anode, a cathode, and an emissive layer disposed between the anode and the cathode. The emissive layer may include a molecule of Formula I wherein an alkyl substituent at position R′5 results in high efficiency and operational stability in the organic light emitting device. Additionally or alternatively, the emissive layer may include a metal-ligand complex in which the ligand is an aryl or alkyl substituted phenylpyridine ligand.
Abstract:
Triphenylene containing benzo-fused thiophene compounds are provided. Additionally, triphenylene containing benzo-fused furan compounds are provided. The compounds may be useful in organic light emitting devices, particularly as hosts in the emissive layer of such devices, or as materials for enhancement layers in such devices, or both.
Abstract:
A new class of compounds containing aza-dibenzothiophene or aza-dibenzofuran are provided. The compounds may be used in organic light emitting devices giving improved stability, improved efficiency, long lifetime and low operational voltage. In particular, the compounds may be used as the host material of an emissive layer having a host and an emissive dopant, or as a material in an enhancement layer.
Abstract:
Phosphorescent organometallic materials are provided, comprising at least one 3-arylacetylacetone ligand. Processes for making such materials, and to organic light emitting devices comprising the materials, are also provided.
Abstract:
An organic light emitting device is provided. The device has an anode, a cathode, and an organic layer disposed between the anode and the cathode. The organic layer comprises an emissive material having a transition metal and two or three bidentate ligands, which may be photoactive ligands. The bidentate photoactive ligands may be bound to the transition metal through a carbon-metal bond and a nitrogen-metal bond to form a cyclometallated ring. The organic layer may have the formula LXa-(L)bM, wherein X is a linking group that links two or more ligand L and M is a metal.