摘要:
Disclosed is a semiconductor device and method of fabricating the same. The device is disposed on a substrate, including a fin constructed with first and second sidewalls, a first gate line formed in the pattern of spacer on the first sidewall of the fin, and a second gate line formed in the pattern of spacer on the second sidewall of the fin. First and second impurity regions are disposed in the fin. The first and second impurity regions are isolated from each other and define a channel region in the fin between the first and second gate lines.
摘要:
According to a nonvolatile memory device having a multi gate structure and a method for forming the same of the present invention, a gate electrode is formed using a damascene process. Therefore, a charge storage layer, a tunneling insulating layer, a blocking insulating layer and a gate electrode layer are not attacked from etching in a process for forming the gate electrode, thereby forming a nonvolatile memory device having good reliability.
摘要:
Methods of forming a unit cell of a metal oxide semiconductor (MOS) transistor are provided. An integrated circuit substrate is formed. A MOS transistor is formed on the integrated circuit substrate. The MOS transistor has a source region, a drain region and a gate. The gate is between the source region and the drain region. The first and second spaced apart buffer regions are formed beneath the source region and the drain region and between respective ones of the source region and integrated circuit substrate and the drain region and the integrated circuit substrate.
摘要:
A method of forming a fin field effect transistor on a semiconductor substrate includes forming a fin-shaped active region vertically protruding from the substrate. An oxide layer is formed on a top surface and opposing sidewalls of the fin-shaped active region. An oxidation barrier layer is formed on the opposing sidewalls of the fin-shaped active region and is planarized to a height no greater than about a height of the oxide layer to form a fin structure. The fin structure is oxidized to form a capping oxide layer on the top surface of the fin-shaped active region and to form at least one curved sidewall portion proximate the top surface of the fin-shaped active region. The oxidation barrier layer has a height sufficient to reduce oxidation on the sidewalls of the fin-shaped active region about halfway between the top surface and a base of the fin-shaped active region. Related devices are also discussed.
摘要:
According to a nonvolatile memory device having a multi gate structure and a method for forming the same of the present invention, a gate electrode is formed using a damascene process. Therefore, a charge storage layer, a tunneling insulating layer, a blocking insulating layer and a gate electrode layer are not attacked from etching in a process for forming the gate electrode, thereby forming a nonvolatile memory device having good reliability.
摘要:
An elongate stacked semiconductor structure is formed on a substrate. The stacked semiconductor structure includes a second semiconductor material region disposed on a first semiconductor material region. The first semiconductor material region is selectively doped to produce spaced-apart impurity-doped first semiconductor material regions and a lower dopant concentration first semiconductor material region therebetween. Etching exposes a portion of the second semiconductor material region between the impurity-doped first semiconductor material regions. The etching removes at least a portion of the lower dopant concentration first semiconductor material region to form a hollow between the substrate and the portion of the second semiconductor material region between the impurity-doped first semiconductor material regions. An insulation layer that surrounds the exposed portion of the second semiconductor material region between the impurity-doped first semiconductor material regions is formed. The hollow may be filled with a gate electrode that completely surrounds the exposed portion of the second semiconductor material region, or the gate electrode may partially surround the exposed portion of the second semiconductor material region and an insulation region may be formed in the hollow.
摘要:
A semiconductor device employs an asymmetrical buried insulating layer, and a method of fabricating the same. The semiconductor device includes a lower semiconductor substrate. An upper silicon pattern is located on the lower semiconductor substrate. The upper silicon pattern includes a channel region, and a source region and a drain region spaced apart from each other by the channel region. A gate electrode is electrically insulated from the upper silicon pattern and intersects over the channel region. A bit line and a cell capacitor are electrically connected to the source region and the drain region, respectively. A buried insulating layer is interposed between the drain region and the lower semiconductor substrate. The buried insulating layer has an extension portion partially interposed between the channel region and the lower semiconductor substrate.
摘要:
Embodiments of the invention include a partially insulated field effect transistor and a method of fabricating the same. According to some embodiments, a semiconductor substrate is formed by sequentially stacking a bottom semiconductor layer, a sacrificial layer, and a top semiconductor layer. The sacrificial layer may be removed to form a buried gap region between the bottom semiconductor layer and the top semiconductor layer. Then, a transistor may be formed on the semiconductor substrate. The sacrificial layer may be a crystalline semiconductor formed by an epitaxial growth technology.