摘要:
A new method and structure is provided for the simultaneous creation of inductive and capacitive components in a monolithic substrate. The invention provides a method and structure whereby a vertical spiral inductor is created on the surface of a substrate. Multiple capacitors are created inside the coils of the vertical spiral conductor. A base layer of dielectric is deposited over the surface of a semiconductor substrate, contact plugs are provided in the base layer of dielectric. Multiple layers of dielectric are deposited over the surface of the base layer, layers of coils are created in the multiple layers of dielectric. Vias are provided in the layer of dielectric to interconnect overlying coils of the spiral inductor. An etch stop layer is deposited on the surface of the upper layer of dielectric. At least two openings are etched in the multiple layers of dielectric, these at least two openings are surrounded by the coils of the spiral inductor and align with the contact plugs provided in the base layers. Spacers are formed on the sidewalls of the openings, the bottom electrode layer, dielectric layer and top electrode layer of the at least two capacitors are deposited over the spacers. The openings are filled with a conductive material, the surface of the conductive material is polished down to the surface of the etch stop.
摘要:
A method for fabricating a DRAM cell, on a SOI layer, is described, featuring the incorporation of a two dimensional, trench capacitor structure, for increased DRAM cell signal, and the use of a polysilicon storage node structure to connect the SOI layer to the semiconductor substrate, to eliminate a floating body effect. A two dimensional trench is created by initially forming a vertical trench, through the SOI layer, through the underlying insulator layer, and into the semiconductor substrate. An isotropic etch is than performed to laterally remove a specific amount of insulator layer, exposed in the vertical trench, creating the lateral component of the two dimensional trench. A deposited polysilicon layer, coating the sides of the two dimensional trench, is used as the storage node structure, for the two dimensional, trench capacitor structure, while also connecting the SOI layer to the semiconductor substrate.
摘要:
A timing signal synchronization circuit to align an internal timing clock within an integrated circuit with an external system clock with minimum skew and within one cycle of the external system clock is disclosed. A timing signal synchronization circuit has an input buffer subcircuit to receive and delay the external system clock. A fixed delay line circuit is connected to the input buffer subcircuit to delay the received external system clock by a second delay factor to create a first timing signal. The first timing signal is the input to a first and a second measurement delay line. Each will respectively measure a first part and a second part of a period of the first timing signal. A first latch array will receive the measurement and create a first latch signal. A second latch array will receive the measurement and create a second latch signal. A variable delay line will receive the first and second latch signals, and adjust a delay time to values of the measurements of the first and second parts of the period of the first timing signal less the second delay factor. The variable delay line will receive and delay the first timing signal by the delay time to create a second timing signal. An internal buffer subcircuit will receive, buffer, amplify, and delay by a third delay factor the second timing signal to create the internal timing clock that is synchronized with the external system clock.
摘要:
A pre-charge and isolation circuit for a folded bit line DRAM array to reduce noise coupling between adjacent bit lines of a DRAM array by allowing only one bit line to be connected to a sense amplifier, while the complementary bit line remains at a reference voltage level is disclosed. The isolation pre-charge circuit will be connected to a pair of bit lines within a DRAM array to pre-charge portions the pair of bit lines to a reference voltage level and to connect a selected DRAM cell to a latching sense amplifier.
摘要:
A DRAM cell capable of storing two bits of digital data as four levels of stored charge within the DRAM cell is disclosed. The four level DRAM cell has a pass transistor, a trench capacitor, and a stack capacitor. The pass transistors has a source connected to a bit line voltage generator to control placement of the charge within the four level DRAM cell, a gate connected to a word line voltage generator to control activation of the DRAM cells, and a drain. The trench capacitor has a top plate connected to the drain and a bottom plate connected to a substrate biasing voltage source. The stack capacitor has a first plate connected to the drain and a second plate connected to a coupling-gate voltage generator. The coupling-gate voltage generator will provide four levels of voltage that will indicate the level of charge to be stored within the four level DRAM cell. An interconnecting block that will interconnect the top plate of the trench capacitor to the first plate of the stack capacitor. The interconnection point between the trench capacitor and the stack capacitor will form the storage node that will retain the level of charge that indicates the state of the two bits of digital data. Four level DRAM cells will be arranged in a plurality of rows and columns to form an array of four level DRAM cells.
摘要:
A contactless capacitor coupled bipolar phototransistor having an integrated electronic shutter for reducing the overflow and blooming problems associated with the imaging of strong images. Overflow control and an anti-blooming mechanism are obtained by use of a second emitter (the "shutter") which is used to remove excess image generated charge. This prevents the base-emitter junction potential from becoming forward biased during image integration when the phototransistor is exposed to a strong image. The shutter is biased slightly lower than the first emitter of the phototransistor so that the base-shutter junction is forward biased sooner than the base-emitter junction when the imaging element is exposed to a strong image. The overflow current of the generated holes is then drained to the shutter, rather than into the emitter where it would produce noise on the column sense line.
摘要:
Using a damascene process, a cup-shaped MTJ device is formed in an opening within a dielectric layer. A passivation layer is formed on the top surfaces of the sidewalls of the cup-shaped MTJ device to enclose the top of the sidewalls, thereby reducing magnetic flux leakage. Accordingly, the MTJ device may be fabricated using the same equipment that are compatible with and commonly used in CMOS technologies/processes.
摘要:
Disclosed herein are various methods of forming FinFET semiconductor devices so as to tune the threshold voltage of such devices. In one example, the method includes forming a plurality of spaced-apart trenches in a semiconducting substrate to define at least one fin (or fins) for the device, prior to forming a gate structure above the fin (or fins), performing a first epitaxial growth process to grow a first semiconductor material on exposed portions of the fin (or fins) and forming the gate structure above the first semiconductor material on the fin (or fins).
摘要:
Using a damascene process, a cup-shaped MTJ device is formed in an opening within a dielectric layer. A passivation layer is formed on the top surfaces of the sidewalls of the cup-shaped MTJ device to enclose the top of the sidewalls, thereby reducing magnetic flux leakage. Accordingly, the MTJ device may be fabricated using the same equipment that are compatible with and commonly used in CMOS technologies/processes.
摘要:
Disclosed are atomic layer deposition method and a semiconductor device including the atomic layer, including the steps: placing a semiconductor substrate in an atomic layer deposition chamber; feeding a first precursor gas to the semiconductor substrate within the chamber to form a first discrete monolayer on the semiconductor substrate; feeding an inert purge gas to the semiconductor substrate within the chamber to remove the first precursor gas which has not formed the first discrete monolayer on the semiconductor substrate; feeding a second precursor gas to the chamber to react with the first precursor gas which has formed the first discrete monolayer, forming a discrete atomic size islands; and feeding an inert purge gas to the semiconductor substrate within the chamber to remove the second precursor gas which has not reacted with the first precursor gas and byproducts produced by the reaction between the first and the second precursor gases.