Abstract:
An insulated-gate field-effect transistor (220U) is provided with an empty-well region for achieving high performance. The concentration of the body dopant reaches a maximum at a subsurface location no more than 10 times deeper below the upper semiconductor surface than the depth of one of a pair of source/drain zones (262 and 264), decreases by at least a factor of 10 in moving from the subsurface location along a selected vertical line (136U) through that source/drain zone to the upper semiconductor surface, and has a logarithm that decreases substantially monotonically and substantially inflectionlessly in moving from the subsurface location along the vertical line to that source/drain zone. Each source/drain zone has a main portion (262M or 264M) and a more lightly doped lateral extension (262E or 264E). Alternatively or additionally, a more heavily doped pocket portion (280) of the body material extends along one of the source/drain zones.
Abstract:
The Si substrate of a group III-N HEMT is formed in layers that define a p-n junction which electrically isolates an upper region of the Si substrate from a lower region of the Si substrate. As a result, the upper region of the Si substrate can electrically float, thereby obtaining a full buffer breakdown voltage, while the lower region of the Si substrate can be attached to a package by way of a conductive epoxy, thereby significantly improving the thermal conductivity of the group III-N HEMT and minimizing undesirable floating-voltage regions.
Abstract:
The buffer breakdown of a group III-N HEMT on a p-type Si substrate is significantly increased by forming an n-well in the p-type Si substrate to lie directly below the metal drain region of the group III-N HEMT. The n-well forms a p-n junction which becomes reverse biased during breakdown, thereby increasing the buffer breakdown by the reverse-biased breakdown voltage of the p-n junction and allowing the substrate to be grounded. The buffer layer of a group III-N HEMT can also be implanted with n-type and p-type dopants which are aligned with the p-n junction to minimize any leakage currents at the junction between the substrate and the buffer layer.
Abstract:
Fabrication of an insulated-gate field-effect transistor (110) entails separately introducing three body-material dopants, typically through an opening in a mask, into body material (50) of a semiconductor body so as to reach respective maximum dopant concentrations at three different vertical locations in the body material. A gate electrode (74) is subsequently defined after which a pair of source/drain zones (60 and 62), each having a main portion (60M or 80M) and a more lightly doped lateral extension (60E or 62E), are formed in the semiconductor body. An anneal is performed during or subsequent to introduction of semiconductor dopant that defines the source/drain zones. The body material is typically provided with at least one more heavily doped halo pocket portion (100 and 102) along the source/drain zones. The vertical dopant profile resulting from the body-material dopants alleviates punchthrough and reduces current leakage.
Abstract:
A gate electrode (302) of a field-effect transistor (102) is defined above, and vertically separated by a gate dielectric layer (300) from, a channel-zone portion (284) of body material of a semiconductor body. Semiconductor dopant is introduced into the body material to define a more heavily doped pocket portion (290) using the gate electrode as a dopant-blocking shield. A spacer (304T) having a dielectric portion situated along the gate electrode, a dielectric portion situated along the body, and a filler portion (SC) largely occupying the space between the other two spacer portions is provided. Semiconductor dopant is introduced into the body to define a pair of source/drain portions (280M and 282M) using the gate electrode and spacer as a dopant-blocking shield. The filler spacer portion is removed to convert the spacer to an L shape (304). Electrical contacts (310 and 312) are formed respectively to the source/drain portions.
Abstract:
A group of high-performance like-polarity insulated-gate field-effect transistors (100, 108, 112, 116, 120, and 124 or 102, 110, 114, 118, 122, and 126) have selectably different configurations of lateral source/drain extensions, halo pockets, and gate dielectric thicknesses suitable for a semiconductor fabrication platform that provides a wide variety of transistors for analog and/or digital applications. Each transistor has a pair of source/drain zones, a gate dielectric layer, and a gate electrode. Each source/drain zone includes a main portion and a more lightly doped lateral extension. The lateral extension of one of the source/drain zones of one of the transistors is more heavily doped or/and extends less deeply below the upper semiconductor surface than the lateral extension of one of the source/drain zones of another of the transistors.
Abstract:
An insulated-gate field-effect transistor (100, 100V, 140, 150, 150V, 160, 170, 170V, 180, 180V, 190, 210, 210W, 220, 220U, 220V, 220W, 380, or 480) is fabricated so as to have a hypoabrupt vertical dopant profile below one (104 or 264) of its source/drain zones for reducing the parasitic capacitance along the pn junction between that source/drain zone, normally serving as the drain, and adjoining body material (108 or 268). In particular, the concentration of semiconductor dopant which defines the conductivity type of the body material increases by at least a factor of 10 in moving from that source/drain zone down to an underlying body-material location no more than 10 times deeper below the upper semiconductor surface than that source/drain zone. The body material is preferably provided with a more heavily doped pocket portion (120 or 280) situated along the other source/drain zone (102 or 262) normally serving as the source.
Abstract:
A bipolar transistor (101) has a base (243) formed with an intrinsic base portion (2431), a base contact portion (245C), and a base link portion (243L) that extends between the intrinsic base portion and the base contact portion. An isolating dielectric layer (267-1 or 267-2) is provided above the base link portion. The length of the base link portion is determined, and thereby controlled, with a lateral spacing portion (269-1 or 269-2) of largely non-monocrystalline semiconductor material, preferably polycrystalline semiconductor material, provided on the dielectric layer above the base link portion. The lateral spacing portion is typically provided as part of a layer of non-monocrystalline semiconductor material used in the gate electrode of an insulated-gate field-effect transistor.
Abstract:
An insulated-gate field-effect transistor (100, 100V, 140, 150, 150V, 160, 170, 170V, 180, 180V, 190, 210, 210W, 220, 220U, 220V, 220W, 380, or 480) has a hypoabrupt vertical dopant profile below one (104 or 264) of its source/drain zones for reducing the parasitic capacitance along the pn junction between that source/drain zone and adjoining body material (108 or 268). In particular, the concentration of semiconductor dopant which defines the conductivity type of the body material increases by at least a factor of 10 in moving from that source/drain zone down to an underlying body-material location no more than 10 times deeper below the upper semiconductor surface than that source/drain zone. The body material preferably includes a more heavily doped pocket portion (120 or 280) situated along the other source/drain zone (102 or 262). The combination of the hypoabrupt vertical dopant profile below the first-mentioned source/drain zone, normally serving as the drain, and the pocket portion along the second-mentioned source/drain zone, normally serving as the source, enables the resultant asymmetric transistor to be especially suitable for high-speed analog applications.
Abstract:
An asymmetric insulated-gate field-effect transistor (100) has a source (240) and a drain (242) laterally separated by a channel zone (244) of body material (180) of a semiconductor body. A gate electrode (262) overlies a gate dielectric layer (260) above the channel zone. A more heavily doped pocket portion (250) of the body material extends largely along only the source. Each of the source and drain has a main portion (240M or 242M) and a more lightly doped lateral extension (240E or 242E). The drain extension is more lightly doped than the source extension. The maximum concentration of the semiconductor dopant defining the two extensions occurs deeper in the drain extension than in the source extension. Additionally or alternatively, the drain extension extends further laterally below the gate electrode than the source extension. These features enable the threshold voltage to be highly stable with operational time.