摘要:
A system and method for asynchronous dynamic millicode entry prediction in a processor are provided. The system includes a branch target buffer (BTB) to hold branch information. The branch information includes: a branch type indicating that the branch represents a millicode entry (mcentry) instruction targeting a millicode subroutine, and an instruction length code (ILC) associated with the mcentry instruction. The system also includes search logic to perform a method. The method includes locating a branch address in the BTB for the mcentry instruction targeting the millicode subroutine, and determining a return address to return from the millicode subroutine as a function of the an instruction address of the mcentry instruction and the ILC. The system further includes instruction fetch controls to fetch instructions of the millicode subroutine asynchronous to the search logic. The search logic may also operate asynchronous with respect to an instruction decode unit.
摘要:
A system and method for overlapping execution (OE) of instructions through non-uniform execution pipelines in an in-order processor are provided. The system includes a first execution unit to perform instruction execution in a first execution pipeline. The system also includes a second execution unit to perform instruction execution in a second execution pipeline, where the second execution pipeline includes a greater number of stages than the first execution pipeline. The system further includes an instruction dispatch unit (IDU), the IDU including OE registers and logic for dispatching an OE-capable instruction to the first execution unit such that the instruction completes execution prior to completing execution of a previously dispatched instruction to the second execution unit. The system additionally includes a latch to hold a result of the execution of the OE-capable instruction until after the second execution unit completes the execution of the previously dispatched instruction.
摘要:
A system includes a storage device including a human readable common instruction table (CIT) stored as a text file. The system also includes CIT access software for performing a method including receiving a request from a first user for all or a subset of the CIT table relating to logic design and for providing the requested data to the first user. The method also includes receiving a request from a second user is received for all or a subset of the CIT table relating to performance analysis and for providing the requested data to the second user. A request is received from a third user for all or a subset of the CIT data relating to design verification and the requested data is provided to the third user.
摘要:
A method and system for implementing store buffer allocation for variable length store data operations are provided. The method includes receiving a store address request and at least one store data request and stepping through data operations for each of the store data requests and an address range for the store data requests to determine alignment and data steering information used to select a storage buffer destination for the data in the store data requests. The method further includes determining availability of the storage buffer by maintaining a reservation list for each storage buffer, maintaining a count of the number of available entries for each storage buffer, updating the reservation list to reflect a reservation acceptance for designated available entries, and clearing entries upon completion of the processing of store data operations. The method also includes reserving the selected storage buffer when the number of available entries meets or exceeds the number of entries required for the data.
摘要:
A system, method, and apparatus for enhancing reliability on scan-initialized latches that affect functionality in a digital design are provided. The system includes a group of latches that affect functionality in the digital design based on state values of the latches, where the latches are scan initialized. The system also includes a disable allowance latch (DAL) allocated to the group of latches, where the DAL is a scan-initialized latch. The system further includes a gating function outputting the state value of at least one of the latches in the group to a functional block in the digital design in response to the DAL being in an enabled state and blocking the gating function output in response to the DAL being in a disabled state.
摘要:
A pipelined microprocessor configured for long operand instructions is disclosed. The microprocessor includes a memory unit and a load-store unit. The load store unit is coupled to the memory unit and includes a data formatter receiving information from the memory unit and including an operand selector and a shift register portion. The microprocessor also includes an execution unit coupled to the load-store unit and receiving operand information there from. The execution unit includes output latches coupled to a storage location within the execution unit for storing output information from the execution unit.
摘要:
A method, system, and computer program product for cross-invalidation handling in a multi-level private cache are provided. The system includes a processor. The processor includes a fetch address register logic in communication with a level 1 data cache, a level 1 instruction cache, a level 2 cache, and a higher level cache. The processor also includes a set of cross-invalidate snapshot counter implemented in the fetch address register. Each cross-invalidate snapshot counter tracks an amount of pending higher level cross-invalidations received before new data for the corresponding cache miss is returned from the higher-level cache. The processor also includes logic executing on the fetch address register for handling level 1 data cache misses and interfacing with the level 2 cache. In response to the new data, and upon determining that older cross-invalidations are pending, the new data is prevented from being used by the processor.
摘要:
A method, system, and computer program product for storing result data from an external device. The method includes receiving the result data from the external device, the receiving at a system. The result data is stored into a store data buffer. The store data buffer is utilized by the system to contain store data normally generated by the system. A special store instruction is executed to store the result data into a memory on the system. The special store instruction includes a store address. The executing includes performing an address calculation of the store address based on provided instruction information, and updating a memory location at the store address with contents of the store data buffer utilizing a data path utilized by the system to store data normally generated by the system.
摘要:
A pipelined microprocessor includes circuitry for store forwarding by performing: for each store request, and while a write to one of a cache and a memory is pending; obtaining the most recent value for at least one complete block of data; merging store data from the store request with the complete block of data thus updating the block of data and forming a new most recent value and an updated complete block of data; and buffering the updated complete block of data into a store data queue; for each load request, where the load request may require at least one updated completed block of data: determining if store forwarding is appropriate for the load request on a block-by-block basis; if store forwarding is appropriate, selecting an appropriate block of data from the store data queue on a block-by-block basis; and forwarding the selected block of data to the load request.
摘要:
A pipelined processor including one or more units having storage locations not directly accessible by software instructions. The processor includes a load-store unit (LSU) in direct communication with the one or more units for accessing the storage locations in response to special instructions. The processor also includes a requesting unit for receiving a special instruction from a requestor and a mechanism for performing a method. The method includes broadcasting storage location information from the special instruction to one or more of the units to determine a corresponding unit having the storage location specified by the special instruction. Execution of the special instruction is initiated at the corresponding unit. If the unit executing the special instruction is not the LSU, the data is sent to the LSU. The data is received from the LSU as a result of the execution of the special instruction. The data is provided to the requester.