摘要:
Processing of transactions within a computing environment is facilitated by taking actions to increase the chances of successfully executing a transaction. A counter is maintained that provides a count of how often a transaction has aborted. The counter increments the count each time the transaction is aborted, and it is reset to zero upon successful completion of the transaction or an interruption leading to no more re-executions of the transaction. If the count reaches a threshold value, then an interrupt is presented and transaction execution is unsuccessful. However, before the count reaches the threshold, a number of actions may be taken to increase the chances of successfully executing the transaction. These actions include actions to be performed within the processor executing the transaction, and/or actions to be performed against conflicting processors.
摘要:
Embodiments of the disclosure include selectively powering up a cache set of a multi-set associative cache by receiving an instruction fetch address and determining that the instruction fetch address corresponds to one of a plurality of entries of a content addressable memory. Based on determining that the instruction fetch address corresponds to one of a plurality of entries of a content addressable memory a cache set of the multi-set associative cache that contains a cache line referenced by the instruction fetch address is identified and only powering up a subset of cache. Based on the identified cache set not being powered up, selectively powering up the identified cache set of the multi-set associative cache and transmitting one or more instructions stored in the cache line referenced by the instruction fetch address to a processor.
摘要:
Embodiments relate to mitigation of lookahead branch predication latency. An aspect includes receiving an instruction address in an instruction cache for fetching instructions in a microprocessor pipeline. Another aspect includes receiving the instruction address in a branch presence predictor coupled to the microprocessor pipeline. Another aspect includes determining, by the branch presence predictor, presence of a branch instruction in the instructions being fetched, wherein the branch instruction is predictable by the branch target buffer, and any indication of the instruction address not written to the branch target buffer is also not written to the branch presence predictor. Another aspect includes, based on receipt of an indication that the branch instruction is present from the branch presence predictor, holding the branch instruction. Another aspect includes, based on receipt of a branch prediction corresponding to the branch instruction from the branch target buffer, releasing said held branch instruction to the pipeline.
摘要:
Embodiments relate to selectively blocking branch instruction predictions. An aspect includes a computer system for performing selective branch prediction. The system includes memory and a processor, and the system is configured to perform a method. The method includes detecting a branch-prediction blocking instruction in a stream of instructions and blocking branch prediction of a predetermined number of branch instructions following the branch-prediction blocking instruction based on the detecting the branch-prediction blocking instruction.
摘要:
A method, system and computer program product for performing an implicit predicted return from a predicted subroutine are provided. The system includes a branch history table/branch target buffer (BHT/BTB) to hold branch information, including a target address of a predicted subroutine and a branch type. The system also includes instruction buffers, and instruction fetch controls to perform a method including fetching a branch instruction at a branch address and a return-point instruction. The method also includes receiving the target address and the branch type, and fetching a fixed number of instructions in response to the branch type. The method further includes referencing the return-point instruction within the instruction buffers such that the return-point instruction is available upon completing the fetching of the fixed number of instructions absent a re-fetch of the return-point instruction.
摘要:
An embodiment of the invention is a multiprocessor system for detecting and recovering from errors. The multiprocessor system includes a first processor and a second processor. The first processor detects an error and initiates a recovery process. The first processor and said second processor synchronize at least one recovery action during the recovery process.
摘要:
Embodiments relate to selectively blocking branch instruction predictions. An aspect includes a computer system for performing selective branch prediction. The system includes memory and a processor, and the system is configured to perform a method. The method includes detecting a branch-prediction blocking instruction in a stream of instructions and blocking branch prediction of a predetermined number of branch instructions following the branch-prediction blocking instruction based on the detecting the branch-prediction blocking instruction.
摘要:
A system and method for controlling restarting of instruction fetching using speculative address computations in a processor are provided. The system includes a predicted target queue to hold branch prediction logic (BPL) generated target address values. The system also includes target selection logic including a recycle queue. The target selection logic selects a saved branch target value between a previously speculatively calculated branch target value from the recycle queue and an address value from the predicted target queue. The system further includes a compare block to identify a wrong target in response to a mismatch between the saved branch target value and a current calculated branch target, where instruction fetching is restarted in response to the wrong target.
摘要:
Embodiments relate to instruction filtering. An aspect includes a system for instruction filtering. The system includes memory configured to store instructions accessible by a processor, and the processor includes a tracking array and a tracked instruction logic block. The processor is configured to perform a method including detecting a tracked instruction in an instruction stream, and storing an instruction address of the tracked instruction in the tracking array based on detecting and executing the tracked instruction. The method also includes accessing the tracking array based on an address of instruction data of a subsequently fetched instruction to locate the instruction address of the tracked instruction in the tracking array as an indication of the tracked instruction. Instruction text of the subsequently fetched instruction is marked to indicate previous execution based on the tracking array. An action of the tracked instruction logic block is prevented based on the marked instruction text.
摘要:
A method, system, and computer program product for enhancing performance of an in-order microprocessor with long stalls. In particular, the mechanism of the present invention provides a data structure for storing data within the processor. The mechanism of the present invention comprises a data structure including information used by the processor. The data structure includes a group of bits to keep track of which instructions preceded a rejected instruction and therefore will be allowed to complete and which instructions follow the rejected instruction. The group of bits comprises a bit indicating whether a reject was a fast or slow reject; and a bit for each cycle that represents a state of an instruction passing through a pipeline. The processor speculatively continues to execute a set bit's corresponding instruction during stalled periods in order to generate addresses that will be needed when the stall period ends and normal dispatch resumes.