Abstract:
A redundancy circuit and method are disclosed for replacing at least one defective memory cell in a memory device. The redundancy circuit may include redundant decode circuitry for selectively maintaining an address of a defective memory cell in the memory device, receiving the input address and generating an output signal having a value indicative of whether the input address corresponds to the address of the defective memory cell. The redundancy circuit may further include a plurality of redundant storage circuits for selectively maintaining data values, and redundant control circuitry for selectively and individually accessing a first of the redundant storage circuits based upon the value of the output signal of the redundant decode circuitry.
Abstract:
A circuit and method are disclosed for asynchronously accessing accessing a ferroelectric memory device. The ferroelectric memory device internally generates timing signals for latching a received address signal and driving the row lines of the device based upon transitions appearing on the received address signal. The circuit receives an address signal and asserts an edge detect signal in response. The address signal is latched following the edge detect a signal being asserted. Address decode circuitry receives the latched address and generates decoded output signals that identify a row of memory cells to be accessed. In this way, a ferroelectric memory device may effectively replace an asynchronous static random access random access memory (SRAM) device.
Abstract:
A circuit and method for performing a stress test on a ferroelectric memory device. The memory device includes a memory cell array having a plurality of row lines, column lines and plate lines. The memory device further includes test circuitry for receiving at least one test control signal and in response to the at least one test control signal allowing a voltage differential to be applied between the column lines and the plate lines, so that a stress voltage may be applied across each of the memory cells at one time.
Abstract:
A detection circuit and a test mode circuit incorporating the detection circuit is disclosed. The detection circuit includes an N-channel transistor having a first source, a first gate, and a first drain, wherein the first drain is connected to a supply voltage. The detection circuit also includes a P-channel transistor having a second source, a second gate, and a second drain, wherein the second source is connected to the first source and the second drain provides an output signal indicative of a supervoltage being applied to the first gate. The test mode circuit also includes a memory access cycle time-out feature override circuit.
Abstract:
A memory device with a test mode control circuit for entering a test mode responsive to a high on the Vss pin or a low on the Vcc pin that supply power to the output pins during normal operation of the memory device. In test mode the wordlines and bitlines of the memory remain active from the time they are activated, typically when the clock switched from a first to a second logic state, until the clock switches back to the first logic state.
Abstract:
A low/zero power memory device includes a deselect mode of operation wherein row decoders, column decoders, write decoders, pre-coders, post-coders and like operational circuits of the memory device needed for wordline and column activation are disabled until such time as a memory device supply voltage exceeds a certain threshold. An included test mode circuit detects test mode activation and overrides application of the power fail deselect mode of operation of the device. This activates the wordline and column related operational circuits immediately at power up such that the device powers up with multiple wordlines and columns activated and ready for application of a stress test overvoltage.
Abstract:
A memory, such as a static random access memory (SRAM), includes at least one memory cell. The bit lines for that memory cell are selectively connected to corresponding write bit lines through a column select pass transistor and a selectively blowable fuse. A reset circuit is connected to the same write bit lines through a fuse structure mimic circuit. Responsive to data transitions on the write bit lines, the reset circuit operates to detect the occurrence of a memory operation to the memory cell and generate a reset signal for resetting the memory in preparation for a next write operation. To support substantially simultaneous presentation of write data to both the reset circuit and the memory cell, the fuse structure mimic circuit delays presentation of the write bit line data to the reset circuit. This introduced delay substantially corresponds to a delay in the presentation of the write bit line data to the memory cell resulting from driving the memory cell bit lines through the selectively blowable fuses.
Abstract:
A circuit and method are provided for generating an initializing signal to a master enable fuse circuit on a redundant line decoder. An initialization pulse may be applied to a master enable circuit having a master enable fuse. The master enable fuse may be coupled to a switched voltage supply powered selectively by battery voltage and external Vcc. A circuit for generating the INITIAL signal determines the transition from a power down state to a powered state. A series of delay elements in a generating circuit generates a predetermined initialization pulse of around 3 ns to 5 ns. Half-latch circuits may be initialized between a first and second voltage threshold. Accordingly, the master enable circuits may be set to the proper initialization states for proper operation and minimum power consumption.
Abstract:
A start write sensing circuit for sensing a start of a write is coupled to a write simulation circuit. The write simulation circuit preferably includes a memory cell replicate to mimic the amount of time required for writing data to the memory cell. The state of the data stored in the memory cell replicate is changed upon the write sensing circuit sensing the start of a write. The memory cell replicate is preferably constructed using the same structure, design, and process as the memory cells of the array so as to accurately simulate the time required for writing data to a memory cell in the array. Upon the write to the memory cell replicate being completed, a write termination signal is generated for terminating the write signal. The write termination signal also is a reset signal for resetting circuits of the array to prepare for the next cycle, whether it be a read or a write.
Abstract:
A memory device with a sense amplifier enable line having the same resistance and capacitance as a local wordline. The sense amplifier enable line is made out of the same material, has the same layout, and has the same load placed on as a local wordline, this will make the sense amplifier enable line have the same resistance, capacitance, and load characteristics as a local wordline. The load on the sense amplifier enable line is a combination of the sense amplifier enable line operational circuitry and sense amplifier enable line load circuit.