摘要:
A computer controller is described for disabling fuel injection into cylinder groups of an engine. The system controls engine output a reduced engine torques without reducing engine air amounts below an engine misfire amount by reducing the number of cylinders carrying out combustion. Engine airflow is controlled to maintain accurate torque at requested levels throughout engine operating ranges.
摘要:
A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
摘要:
A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
摘要:
A method is disclosed for controlling operation of an engine coupled to an exhaust treatment catalyst. Under predetermined conditions, the method operates an engine with a first group of cylinders combusting a lean air/fuel mixture and a second group of cylinders pumping air only (i.e., without fuel injection). In addition, the engine control method also provides the following features in combination with the above-described split air/lean mode: idle speed control, sensor diagnostics, air/fuel ratio control, adaptive learning, fuel vapor purging, catalyst temperature estimation, default operation, and exhaust gas and emission control device temperature control. In addition, the engine control method also changes to combusting in all cylinders under preselected operating conditions such as fuel vapor purging, manifold vacuum control, and purging of stored oxidants in an emission control device.
摘要:
A method and apparatus for controlling the operation of a “lean-burn” internal combustion engine in cooperation with an exhaust gas purification system having an emissions control device capable of alternatively storing and releasing an exhaust gas constituent, such as NOx, when exposed to exhaust gases that are lean and rich of stoichiometry, respectively, wherein a measure of the efficiency of the device to remove the exhaust gas constituent from engine exhaust gas is determined, and a purge event for releasing previously-stored NOx is initiated when the efficiency measure falls below a threshold value.
摘要:
A method and apparatus for controlling the operation of a “lean-burn” internal combustion engine in cooperation with an exhaust gas purification system having an emissions control device capable of alternatively storing and releasing NOx when exposed to exhaust gases that are lean and rich of stoichiometry, respectively, optimizes vehicle fuel economy while complying with emissions standards by prohibiting lean engine operation only when tailpipe emissions, calculated in terms of grams of an exhaust gas constituent per vehicle mile traveled, exceeds a permissible threshold value. The threshold value is preferably itself periodically determined based upon a detected or determined level of vehicle activity, such that vehicle activity characterized by greater transient engine operation prescribes a relatively lower level of permissible vehicle emissions.
摘要:
An improved method for monitoring an efficiency of a three-way catalyst coupled in an exhaust passage of an internal combustion engine is presented. First, a reference efficiency estimate (shortly after a SOx purge) is generated based on several data points obtained during normal vehicle driving conditions over varying device temperatures. Next, a current efficiency estimate is obtained from several data points. The two estimates are compared to obtain a measure of reduction in the catalyst efficiency due to device sulfation.
摘要:
A method for improving a purge conversion efficiency of a Lean NOx Trap coupled downstream of a lean-burn internal combustion engine is presented. This method recognizes that during a purge of the LNT, its temperature increases due to the exothermic reactions in the LNT. Once the LNT temperature exceeds a certain threshold, further increases lead to a reduction in the NOx storage capacity, and therefore an increase in NOx emissions during the purge of the LNT. Therefore, it is proposed to cool the LNT temperature once the threshold is exceeded. This method improves emission control and fuel economy during purge.
摘要:
A method for improving a purge conversion efficiency of a Lean NOx Trap coupled downstream of a lean-burn internal combustion engine is presented. This method proposes adjusting the purge air-fuel ratio of the device based on its temperature. According to the proposed method, a less rich air-fuel ratio is provided at lower operating temperatures to reduce hydrocarbon emissions since within this temperature range air-fuel ratio does not have a significant affect on NOx emissions. At mid-range operating temperatures, the air-fuel ratio is gradually decreased (made more rich) to reduce NOx emissions. And, finally, at high operating temperatures, HC and NOx emissions are reduced, and therefore, the purge air-fuel is kept at a constant more rich value. This method improves emission control and fuel economy during purge.
摘要:
An exhaust gas treatment system for an internal combustion engine includes a pair of upstream emission control devices which respectively receive the exhaust gas generated by a respective group of cylinders, and a single, shared downstream emission control device receiving catalyzed exhaust gas from each of the upstream emission control devices. After the downstream device stores a selected constituent gas generated when each cylinder group is operating “lean,” the downstream device is purged by operating the first cylinder group with a stoichiometric air-fuel mixture while operating the second cylinder group with a rich air-fuel mixture, such that the combined catalyzed exhaust gas flowing through the downstream device during the purge event has an air-fuel ratio slightly rich of stoichiometry. As a result, the invention improves overall vehicle fuel economy because only one of the upstream devices is purged of stored oxygen when purging the downstream device of previously-stored constituent gas.