Abstract:
Systems and methods to accurately display lateral deviation symbology in offset approaches to runways is provided. A system for on-aircraft display of lateral deviation symbology for use in offset approaches comprises means for generating a conformal video display representation of an aircraft's current position, means for notifying a flight crew of the existence of an offset approach, means for displaying an extended runway center line, and means for displaying an approach line.
Abstract:
A system and method are provided for integrating and displaying the collective cue and the pitch and roll cue of a helicopter display with a flight path marker providing a moving reference showing the aircraft flight path.
Abstract:
A method and system for dynamically representing the separation for air traffic has been developed. First, air traffic is detected which requires maintenance of a separation distance from an ownship aircraft. The ground speed of the ownship, the ground speed of the air traffic and the current separation distance is determined. A predicted separation distance is calculated following a specific time interval. The predicted separation distance between the air traffic and the ownship is based on a differential in ground speed between the air traffic and the ownship and the specific time interval. The location of the air traffic, the separation distance and the predicted separation distance are all shown on a graphical display onboard the ownship. The separation distance and the predicted separation distance are represented on a non-linear scale on the graphical display.
Abstract:
Systems and methods are provided for detecting potential vehicle operator incapacitation based on operator physiological state data. Raw operator physiological state data is received from a biosensing wearable device of an operator of a vehicle. The raw operator physiological state data includes raw operator actigraphy state data. Contextual motion data is received from at least one environmental motion sensor. The contextual motion data is associated with movement of the vehicle. A motion filter mask is generated based on the contextual motion data. The motion filter mask is applied to the raw operator actigraphy state data to filter the contextual motion data from the raw operator actigraphy state data to generate actual operator actigraphy state data. A determination is made regarding whether the actual operator actigraphy state data is less than an actigraphy threshold. An operator incapacity alert is issued based on the determination.
Abstract:
Methods and systems for providing landing area information on an active avionic display on a display device in a cockpit of an aircraft. The system includes an avionic display module configured to render an avionic display on a display device; and a landing area guidance module configured to: construct a graphical insert that is smaller than the avionic display, the graphical insert depicting the landing area environment as a two-dimensional area that includes a landing location rendered therein in a first visualization scheme; overlay the graphical insert on a small portion of the avionic display; indicate a target exit on the landing location; determine whether a runway overrun awareness alerting system (ROAAS) alert has been received; determine whether a surface indication alerts (SurfIA) alert has been received; responsive to the ROAAS alert and the SurfIA alert, alter the rendering within the graphical insert.
Abstract:
Systems and methods for calibrating a synthetic image on an avionic display. The method includes receiving a synthetic image frame generated by an avionic display system and a sensor image frame from a forward-facing onboard sensor system. Object recognition is performed on the sensor image frame to generate a first search region for a first Federal Aviation Administration (FAA) marking, defined as a first search region-FAA marking pair. The sensor image frame and the first search region-FAA marking pair are processed using a deep learning method (DLM) to determine for the first FAA marking of the first search region-FAA marking pair, each of: a position deviation calculation, an orientation deviation calculation, and a synthetic image distortion factor. The synthetic image frame is then updated and rendered in accordance with the position deviation calculation, the orientation deviation calculation, and the synthetic image distortion factor, thereby calibrating the synthetic image frame.
Abstract:
A ground collision avoidance method in an ownship vehicle is disclosed. The method includes: retrieving position measurements for the ownship vehicle and for a dynamic obstacle; retrieving mapping data from an airport map database that includes coordinate data for airport travel pathways; adjusting a position measurement for the ownship vehicle and a position measurement for the dynamic obstacle based on coordinate data retrieved from the airport map database and historical aircraft movement data; predicting a series of future positions for the ownship vehicle that are constrained by airport surface operation rules; predicting a series of future positions for the dynamic obstacle that are constrained by airport surface operation rules; calculating whether a potential collision is imminent; and causing a collision alert to be displayed when the processor has determined that a potential collision between the ownship vehicle and the dynamic obstacle is imminent.
Abstract:
Methods and systems for providing landing area information on an active avionic display on a display device in a cockpit of an aircraft. The system includes an avionic display module configured to render an avionic display on a display device; and a landing area guidance module configured to: construct a graphical insert that is smaller than the avionic display, the graphical insert depicting the landing area environment as a two-dimensional area that includes a landing location rendered therein in a first visualization scheme; overlay the graphical insert on a small portion of the avionic display; indicate a target exit on the landing location; determine whether a runway overrun awareness alerting system (ROAAS) alert has been received; determine whether a surface indication alerts (SurfIA) alert has been received; responsive to the ROAAS alert and the SurfIA alert, alter the rendering within the graphical insert.
Abstract:
Flight deck display systems and methods for generating cockpit displays including dynamic taxi turnoff icons are provided. In one embodiment, the flight deck display system includes a display device, a memory storing an airport map database, and a controller operably coupled to the display device and to the memory. The controller is configured to recall information from the airport map database pertaining to a runway cleared for usage by the aircraft. The controller further identifies a taxi exit along the runway based, at least in part, on the information recalled from the airport map database. The controller then generates a dynamic taxi turnoff icon on the display device including symbology representative of the runway and the location of the taxi exit along the runway.
Abstract:
Systems and methods for associating critical flight reference data with a flight path vector symbol are provided. The system displays a continuously updated image with a symbol for a flight path vector. The system displays a first readout arrangement, in which the airspeed indicator and the altitude indicator are (i) each located in relationship to boundary edges of the display device, and (ii) their locations are substantially static. The system detects a deviation between the flight path vector and the heading, and when the deviation exceeds a threshold, the system toggles to a second readout arrangement, in which the airspeed indicator and the altitude indicator are (i) each located a distance measured from the flight path vector, and (ii) dynamically change location responsive to movement of the flight path vector.