Abstract:
Embodiments relate to coreless magnetic field current sensors, systems and methods, such as magnetoresistive sensors, systems and methods, to sense current flow in a conductor via a related magnetic field. In an embodiment, a current sensor system for sensing a current in a conductor from a magnetic field induced thereby, comprising a plurality N of magnetoresistive (MR) sensors arranged on a circle concentric to a center of the conductor and spaced apart from one another by 360 degrees/N, wherein each MR sensor has a sensitivity plane and is responsive to a projection of the magnetic field into the sensitivity plane, the sensitivity planes of the plurality of MR sensors being parallel, and wherein the plurality of MR sensors are arranged relative to the conductor such that the magnetic field has a non-vanishing component parallel to the sensitivity plane; at least one magnetic element arranged to provide a bias magnetic field on the plurality of MR sensors; and circuitry coupled to the plurality of MR sensors to determine the current in the conductor by combining signals from each of the plurality of MR sensors.
Abstract:
An electronic device is disclosed as a part of a magnetic field sensor or a mechanical stress sensor. The electronic device includes a Hall effect region, a first contact (temporarily functioning as a first supply contact), a second contact (second supply contact), and a third contact (temporarily functioning as a first sense contact) that are arranged in or on a surface of the Hall effect region. The first contact and the third contact are arranged in a substantially symmetrical manner to each other with respect to the second contact. An electrical current distribution within the Hall effect region is influenced by a physical quantity (e.g. magnetic field strength or mechanical stress) to be measured. A sense signal tapped at the third contact is a function of the current distribution, the sense signal thus being indicative of the physical quantity. A corresponding sensing method using the electronic device is also disclosed.
Abstract:
Embodiments relate to magnetic field current sensors having sensor elements for sensing at least two magnetic field components, for example Bx and By. The current in a conductor is estimated by Bx and Bx/By, wherein Bx is the primary measurement and Bx/By is a corrective term used to account for position tolerances between the sensor and the conductor. In other embodiments, the corrective term can be dBx/By, where dBx is a difference in between components sensed at different sensor elements. The particular field components can vary in embodiments; for example, the current can be estimated by By and By/Bx, or dBy/Bx or some other arrangement.
Abstract:
Embodiments relate to magnetic field angle sensors that utilize axial and perpendicular sensors collectively to infer a rotational angle. In embodiments, a sensor system comprises at least one axial sensor unit and at least one perpendicular sensor unit arranged in a single sensor package or on a single substrate. The axial and perpendicular sensor data both representative of the rotational position can be used to improve output angle accuracy by, e.g., calibrating the sensor system.
Abstract:
A magneto-resistive angle sensor includes a first half bridge circuit including a first magneto-resistive element and a second magneto-resistive element, and a second half bridge circuit having a third magneto-resistive element and a fourth magneto-resistive element, wherein the first, second, third, and fourth magneto-resistive element are arranged parallel to a x′/y′-plane of a Cartesian reference system with an x′-axis and y′-axis, both orthogonal to each other. The geometrical gravity centers of the first and the second magneto-resistive elements of the first half bridge circuit and the geometrical gravity centers of the third and the fourth magneto-resistive elements of the second half bridge circuit have an identical x′-coordinate, wherein the sum of the value of the geometrical inertia moment of the first magneto-resistive element around the y′-axis, the negative value of the geometrical inertia moment of the second magneto-resistive element around the y′-axis, the value of the geometrical deviation moment of the third magneto-resistive element in the x′/y′-plane and the negative value of the geometrical deviation moment of the fourth magneto-resistive element in the x′/y′-plane vanishes within a tolerance range. Further, the sum of the value of the geometrical inertia moment of the third magneto-resistive element around the y′-axis, the negative value of the geometrical inertia moment of the fourth magneto-resistive element around the y′-axis, the negative value of the geometrical deviation moment of the first magneto-resistive element in the x′/y′-plane and the value of the geometrical deviation moment of the second magneto-resistive element in the x′/y′ vanishes within a tolerance range.
Abstract:
A sensor arrangement includes a sensor element and a magnet module. The sensor element is configured to measure a magnetic field and is positioned within a shaft. The shaft is configured to shield the magnet module and the sensor element. The magnet module is configured to generate the magnetic field. The sensor element is at least partially positioned within the shaft.
Abstract:
A carrier of an electronic circuit, the carrier including a first sensor for determining a first signal based on a sum of a first normal stress component and a second normal stress component, and a second sensor for determining a second signal based on a difference between the first normal stress component and a second normal stress component. Also, a corresponding circuit, method and device.
Abstract:
An electronic device includes a number of n Hall effect regions with n>1, wherein the n Hall effect regions are isolated from each other. The electronic device also includes at least eight contacts in or on surfaces of the n Hall effect regions, wherein the contacts include: a first and a second contact of each Hall effect region. A first contact of the (k+1)-th Hall effect region is connected to the second contact of the k-th Hall effect region for k=1 to n−1, and the first contact of the first Hall effect region is connected to the second contact of the n-th Hall effect region. The at least eight contacts include at least two supply contacts and at least two sense contacts. Each Hall effect region includes at most one of the at least two supply contacts and at most one of the at least two sense contacts.
Abstract:
Embodiments relate to reducing offset error in sensor systems. In embodiments, the sensitivity and offset of a sensor depend differently on some parameter, e.g. voltage, such that operating the sensor at two different values of the parameter can cancel the offset error. Embodiments can have applicability to stress sensors, Hall plates, vertical Hall devices, magnetoresistive sensors and others. The offset error can be reduced using a correction factor based on a first offset error of the sensor system when operated in a first phase and a second offset error of the sensor system when operated in second first phase. The sensor system can generate an output signal based on first and second output signals generated when operating in the first and second phases, respectively.
Abstract:
Some embodiments herein relate to a sensor package. The sensor package includes a printed circuit board with a laminar current conductor arranged on a first main surface of the printed circuit board. The sensor package also includes a sensor chip adapted to measure a current flowing through the laminar current conductor, wherein the sensor chip comprises a magnetic field sensor. The sensor chip is electrically insulated from the current conductor by the printed circuit board, and is arranged on a second main surface of the printed circuit board opposite to the first main surface. The sensor chip is hermetically sealed between the mold material and the printed circuit board, or is arranged in the printed circuit board and hermetically sealed by the printed circuit board.