摘要:
Methods of reducing and/or avoiding fiber ordering during preparations of a multi-fiber, fiber optic cable to provide a connectorized multi-fiber, fiber optic cable system, and related fiber optic cables and assemblies are also disclosed. The embodiments disclosed herein allow for a section of a multi-fiber, fiber optic cable to be prepared to form two or more connectorized fiber optic cables as part of a multi-fiber cable system without requiring specific fiber ordering in the fiber optic connectors. The natural ordering of the optical fibers in the fiber optic cable is fixed in place in at least one section of the fiber optic cable before the optical fibers are cut to form adjacent fiber optic connectors in the cable system. Thus, the fiber ordering between adjacent fiber optic connectors in the cable system will be the same even though the fiber ordering of the optical fibers was random during cable preparations.
摘要:
Optical couplings for optically coupling one or more devices are disclosed. According to one embodiment, an optical coupling includes an optical coupling body, an optical interface, and a coded magnetic array located at the optical coupling body. The coded magnetic array has a plurality of magnetic regions configured for mating the optical interface. The optical coupling further includes a reflective surface within the optical coupling body and positioned along an optical path of the optical coupling body. The reflective surface is operable to redirect an optical signal propagating within the optical coupling body such that it propagates through the optical interface. The optical coupling may be configured as a plug, such as a plug of a connector assembly, or as a receptacle, such as a receptacle on an electronic device. Connector assemblies of optical cables, optical coupling receptacles, and translating shutter assemblies are also disclosed,
摘要:
Embodiments for binding material processing of gradient index (GRIN) rods into GRIN lenses attachable to optical devices, components, and methods are disclosed. A cylindrical GRIN rod comprises an optical axis and a longitudinal axis at a center axis, where an index of refraction may be greatest at the optical axis. The GRIN rod includes GRIN lenses along the longitudinal axis. The GRIN lenses include a first optical surface and a second optical surface opposite the first optical surface. Separation processes and devices may separate the GRIN lenses from the GRIN rods and these processes may be automated. Other processes may polish the first and the second optical surfaces. A gripper may insert the GRIN lens into an optical device.
摘要:
Embodiments disclosed herein include fiber optic connectors employing a movable optical interface connected by optical fibers to a fiber optic cable, components and methods. In one embodiment, the movable optical interface moves between an extended position for cleaning by the user of the movable optical interface and a retracted position to optically connect the fiber optic connector to an optical device in a mechanically-secure manner. Because the fiber optic cable employs the movable optical interfaces, embodiments described herein involve one or more fiber protection features to prevent optical fiber attenuation and/or damage to the end portions of the optical fibers.
摘要:
A system for cleaning internal optical components of a fiber optic connector includes a source of cleaning medium such as compressed air connected to a cleaning tip. The cleaning tip has a body and a tongue that is configured to be inserted into the end of the fiber optic connector. Nozzles are formed on the tongue. The tongue may have features to open shutters and/or other protective features in the connector that normally protect the internal optical components. When the tongue is inserted into the end of the connector, the nozzles are positioned adjacent optical components to be cleaned and compressed air is delivered through the nozzles to clean the components. Backwash can be exhausted around the tongue or through the tongue to eject contaminants from the fiber optic connector.
摘要:
Methods for centering at least one optical fiber (10) having a centerline (16) in a connector ferrule (100) having at least one bore (120) with a central axis (AC) is disclosed. One method includes inserting a bare-fiber portion (13) into a ferrule bore so that at least a section (10S) of the bare-fiber portion extends beyond the ferrule front end (106). The method also includes selectively applying an amount of energy to the bare-fiber section to form a locally deformable region (19), and forming at a bulge (250) in the locally deformable region. The method also includes causing the bulge to form a force-fit with the bore at the ferrule front end, thereby substantially centering the optical fiber centerline along the bore central axis. Methods of centering nano-engineered optical fibers are also disclosed, wherein the optical fiber end is processed so that a substantially void-free fiber end (14) is made to substantially coincide with the ferrule front end. Methods directed to multiple optical fibers and multifiber ferrules are also disclosed.
摘要:
Fiber optic interface devices (20, 320) for electronic devices (300) are disclosed. A plug-type fiber optic interface (20) has an axially moveable multi-fiber ferrule (100) that supports optical fibers (52) or a combination of optical fibers and gradient-index lenses (600). A resilient member (150) serves to provide the ferrule with forward-bias and rear-bias positions relative to a recessed front end (22) of a housing (21). A fiber optic interface assembly (570) that includes mated plug and receptacle fiber optic interface devices (20, 320) is also disclosed.
摘要:
A method for laser processing arrays of optical fibers and high-fiber count splicing connectors and adapters are disclosed. The method includes the steps of providing a structure having optical fibers arranged in a plurality of rows and placing a protection element adjacent to a first row of optical fibers and a second row of optical fibers. Thereafter, the first row of optical fibers can be processed using the laser. The protection element may also be used to move optical fibers. In one embodiment, the protection element has a first portion and a second portion that have relative movement therebetween. In other variations, an absorption element may be provided adjacent the first row of optical fibers for inhibiting incidental damage to the structure.
摘要:
A fiber optic module assembly that may be pulled from a first location to a second location by a pulling means, the module assembly defining a pulling feature. The assembly may further be installed directly into a mounting structure for use as a patch panel. The fiber optic module assembly may be attached in a vertical orientation, facilitated by an articulated strain relief boot that pivots and rotates for cable management, which reduces the vertical footprint of the fiber optic module assembly. Embodiments of the fiber optic module assembly may be connected to the rear or side of a mounting structure for optical connection to pigtailed modules. The fiber optic module assembly may have a modular connector interface for mating dissimilar fiber optic connector assemblies.
摘要:
A fiber optic cable assembly with a floating tap is disclosed, wherein the assembly comprises a fiber optic cable having a cable fiber assembly, such as in the form of a ribbon stack. The assembly includes at least one network access point (NAP) for accessing at least one cable fiber in the cable fiber assembly and at least one strength area for example a strength member. At least one cable fiber is extracted from the cable fiber assembly and held by a transition assembly. A buffer conduit loosely contains the at least one cable fiber and guides it to an intermediate buffer conduit, which in turn guides the at least one cable fiber to a splice tube. The intermediate buffer conduit can translate relative to the splice tube. At least one tether fiber is spliced to the at least one cable fiber. Alternatively, the at least one cable fiber has sufficient length to serve as the at least one tether fiber so that splicing to another fiber is not required. Each strength member is covered by a movable member. A bonding structure bonds the cable fiber assembly, buffer conduit and movable member so that the cable fiber assembly can translate but not rotate relative to the cable within the NAP. This allows the tap point to “float” within the NAP when the cable fiber assembly needs to translate within the cable.