摘要:
An optical device is provided having a solid state nonlinear material with a nanostructured extent, in at least one dimension, that is less than about 10 nm or that is at a temperature of less than about 77 K. An electronic band gap, EGap, of the material is at least about twice as large as an energy of a photon with a wavelength, λ, equal to an operational wavelength of the device. The material is characterized by a switching figure of merit, ξ, having a value that is at least about 2π. A dielectric structure is around at least one dimension of the nonlinear material in a geometric arrangement having a characteristic photonic band gap that at least partially overlaps the electronic band gap of the material. At least one waveguide is disposed at the dielectric structure in sufficient proximity with the material for coupling light to the material.
摘要:
In embodiments of the present invention improved capabilities are described for receiving magnetic transmission of power from at least a first high-Q resonator, comprising a wire loop high-Q resonator, having a wire formed into at least one loop forming an inductance and having a capacitance, the wire loop resonator having an LC value tuned for receiving a magnetic field of a first specified frequency, and producing an output based on receiving the magnetic field that includes electrical power. The wire loop resonator may include a first part associated with the wire loop resonator which increases the coupling between the first high-Q resonator and the wire loop portion of said resonator without increasing the radius of the wire loop resonator.
摘要:
Described herein are embodiments of a wireless power transmission system which includes a wireless source high-Q resonator and power supply, said power supply generating signals at a first frequency, and said high-Q resonator having an inductor formed by a wire, a capacitive part, and said inductive part and capacitive part being resonant with said first frequency, and said resonator having at least one component that renders it resistant to anything other than large metallic structures in its vicinity.
摘要:
Described herein are embodiments of forming a wireless power transfer system which include locating a source high-Q resonator on one side of a solid object, where the solid object may be an object from the group consisting of a solid non-conducting wall, or a solid non-conducting window, locating a receiving high-Q resonator on the other side of the solid object, aligning a first position of the source resonator with a second position of the receiving resonator, and using the source resonator to create a magnetic field, and using the receiving resonator to receive the magnetic field, and to produce an output that includes power based on said receiving the magnetic field.
摘要:
Described herein are improved configurations for a wireless power transfer for electronic devices that include at least one source magnetic resonator including a capacitively-loaded conducting loop coupled to a power source and configured to generate an oscillating magnetic field and at least one device magnetic resonator, distal from said source resonators, comprising a capacitively-loaded conducting loop configured to convert said oscillating magnetic fields into electrical energy, wherein at least one said resonator has a keep-out zone around the resonator that surrounds the resonator with a layer of non-lossy material.
摘要:
Described herein are embodiments of forming a wireless power transfer system which uses at least two high-Q magnetically resonant elements, and which have values which are set to acceptable levels of electric and magnetic field strength and radiated power.
摘要:
Described herein are embodiments of a source resonator coupled to an energy source generating an oscillating near field region; and at least one device resonator optionally coupled to at least one energy drain and freely moving within the near field region of the source resonator. The source resonator and the at least one device resonator may be coupled to transfer electromagnetic energy wirelessly from said source resonator to said at least one device resonator as the at least one device resonator moves freely within the near field region, where the source resonator and the at least one device resonator may be coupled to provide κ/sqrt(Γ1Γ2)>0.2 over an operating region.
摘要:
Described herein are improved configurations for a wireless power transfer system with at least one adjustable magnetic resonator that may include a first magnetic resonator with a plurality of differently sized inductive elements, at least one power and control circuit configured to selectively connect to at least one of the plurality of differently sized inductive elements, one or more additional magnetic resonators separated from the first magnetic resonator, and measurement circuitry to measure at least one parameter of a wireless power transfer between the first magnetic resonator and the one or more additional magnetic resonators. One or more connections between the plurality of differently sized inductive elements and the at least one power and control circuit may be configured to change an effective size of the first magnetic resonator according to the at least one parameter measured by the measurement circuitry.
摘要:
Described herein are embodiments of a first resonator, with a resonant frequency f1, optionally coupled to an energy source; and a second resonator, with a resonant frequency f2, optionally coupled to an energy drain, located a variable distance from the first resonator. The first resonator and the second resonator may be coupled to provide near-field wireless energy transfer among the first resonator and the second resonator, and where f1 may be approximately equal to f2 and both f1 and f2 may be less than 400 MHz.
摘要:
A laser structure is provided that includes a pulsed source producing a pulsed signal having a low spontaneous noise component to its spectral output and a pulse-shape that is optimally flat. Also, the laser structure includes one or more optical fiber structures receiving the pulsed signal and performing Raman amplification. The pulsed signal is used to excite in the one or more optical fiber structures possessing normal chromatic dispersion, which acts as a nonlinear system for efficient mid-infrared spectral generation.