摘要:
The present specification discloses an X-ray system for processing X-ray data to determine an identity of an object under inspection. The X-ray system includes an X-ray source for transmitting X-rays, where the X-rays have a range of energies, through the object, a detector array for detecting the transmitted X-rays, where each detector outputs a signal proportional to an amount of energy deposited at the detector by a detected X-ray, and at least one processor that reconstructs an image from the signal, where each pixel within the image represents an associated mass attenuation coefficient of the object under inspection at a specific point in space and for a specific energy level, fits each of pixel to a function to determine the mass attenuation coefficient of the object under inspection at the point in space; and uses the function to determine the identity of the object under inspection.
摘要:
The present application is directed toward the generation of three dimensional images in a tomography system having X-ray sources offset from detectors, in particular in a system where the sources are located on a plane, while detectors are located on multiple parallel planes, parallel to the plane of sources and all the planes of detectors lie on one side of the plane of sources. A controller operates to rebin detected X-rays onto a non-flat surface, perform two dimensional reconstruction on the surface, and generate the three dimensional image from reconstructed images on the plurality of surfaces.
摘要:
Apparatus for monitoring in real time the movement of a plurality of substances in a mixture, such as oil water and air flowing through a pipe comprises an X-ray scanner arranged to make a plurality of scans of the mixture over a monitoring period to produce a plurality of scan data sets, and control means arranged to analyze the data sets to identify volumes of each of the substances and to measure their movement. By identifying volumes of each of the substances in each of a number of layers and for each of a number of scans, real time analysis and imaging of the substance can be achieved.
摘要:
An X-ray scanner comprises an array (12) of X-ray detectors (16) arranged in cylindrical configuration around an imaging volume (28), and a multi-focus X-ray source (20) which extends in a helical configuration around the outside of the detector array (12). A helical gap (24) in the detector array (12) allows X-rays from the source (20) to pass through the patient (26) in the imaging volume (28), and onto the detectors (16) on the opposite side of the scanner. The source (20) is controlled so that the X-rays are produced from a number of source points along the helical locus (23) to produce a tomographic image. As the patient is stationary and the source point varied electrically, the scanning rate is sufficient to produce a series of images which can be displayed as a real time three-dimensional video image.
摘要:
An anode for an X-ray source is formed in two parts, a main part and a collimating part. The main part has the target region formed on it. The two parts between them define an electron aperture through which electrons pass to reach the target region, and an X-ray aperture through which the X-rays produced at the target leave the anode. The anode produces at least the first stage of collimation of the X-ray beam produced.
摘要:
The present specification discloses an X-ray scanning system with a non-rotating X-ray scanner that generates scanning data defining a tomographic X-ray image of the object and a processor executing programmatic instructions where the executing processor analyzes the scanning data to extract at least one parameter of the tomographic X-ray image and where the processor is configured to determine if the object comprises a liquid, sharp object, narcotic, currency, nuclear materials, cigarettes or fire-arms.
摘要:
An anode for an X-ray tube includes at least one thermally conductive anode segment in contact with a rigid support member and cooling means arranged to cool the anode. The anode may further include a plurality of anode segments aligned end to end, each in contact with the support member.
摘要:
The present specification discloses an X-ray system for processing X-ray data to determine an identity of an object under inspection. The X-ray system includes an X-ray source for transmitting X-rays, where the X-rays have a range of energies, through the object, a detector array for detecting the transmitted X-rays, where each detector outputs a signal proportional to an amount of energy deposited at the detector by a detected X-ray, and at least one processor that reconstructs an image from the signal, where each pixel within the image represents an associated mass attenuation coefficient of the object under inspection at a specific point in space and for a specific energy level, fits each of pixel to a function to determine the mass attenuation coefficient of the object under inspection at the point in space; and uses the function to determine the identity of the object under inspection.
摘要:
An electron source for an X-ray scanner includes an emitter support block, an electron-emitting region formed on the support block and arranged to emit electrons, an electrical connector arranged to connect a source of electric current to the electron-emitting region, and heating structure arranged to heat the support block.
摘要:
The present application discloses an X-ray scanner having an X-ray source arranged to emit X-rays from source points through an imaging volume. The scanner may further include an array of X-ray detectors which may be arranged around the imaging volume and may be arranged to output detector signals in response to the detection of X-rays. The scanner may further include a conveyor arranged to convey an object through the imaging volume in a scan direction, and may also include at least one processor arranged to process the detector signals to produce an image data set defining an image of the object. The image may have a resolution in the scan direction that is at least 90% as high as in one direction, and in some cases two directions, orthogonal to the scan direction.