摘要:
A magnetic head includes a coil, and a magnetic path forming section for defining a first space for a portion of the coil to pass through. The magnetic path forming section includes a core section. The coil includes a first winding portion and a second winding portion connected in series. The first winding portion includes one or two first coil elements extending to pass through the first space, and extends once or twice around the entire perimeter of the core section. The second winding portion does not pass through the first space, and extends less than once around the entire perimeter of the core section to rotate n degrees about a center point of the core section, where n is greater than 270 and smaller than 360.
摘要:
A perpendicular magnetic write head includes: a magnetic pole having an end face on an air bearing surface; and side shield layers each having an end face on the air bearing surface, and arranged on both sides, in a write track width direction, of the magnetic pole with a side gap in between. The end face of the magnetic pole has a geometry in which a width at a trailing edge is larger than a width at a leading edge. Relationship D1
摘要:
A thermally-assisted magnetic recording head includes a medium facing surface, a magnetic pole, a waveguide including a core and a cladding, and a plasmon generator. The magnetic pole is located forward of the core in the direction of travel of a magnetic recording medium. The plasmon generator is disposed between the core and the magnetic pole. The core has an evanescent light generating surface facing toward the plasmon generator. The plasmon generator has a front end face located in the medium facing surface, a flat surface facing toward the'evanescent light generating surface, and first and second side surfaces that are at a distance from each other and are located farther from the evanescent light generating surface than is the flat surface.
摘要:
A thermally-assisted magnetic recording head includes: a medium facing surface; a magnetic pole; a waveguide including a core and a cladding; a plasmon generator; and a protruding member. The protruding member is disposed between the medium facing surface and a front end face of the core facing toward the medium facing surface. The protruding member has a first end face located in the medium facing surface, and a second end face facing toward the front end face of the core and receiving light having propagated through the core and passed through the front end face. The protruding member is formed of a metal different from both a material forming the magnetic pole and a material forming the plasmon generator. The protruding member is heated and expanded by the light received at the second end face, so that the first end face gets protruded toward a magnetic recording medium.
摘要:
A main magnetic-pole layer is provided with, at the tip end portion thereof, a trailing shied on the trailing side via a non-magnetic gap layer, and the non-magnetic gap layer includes therein one or more magnetic layers. This magnetic layer appropriately controls the amount of magnetic fluxes coming from the tip end portion of the main magnetic-pole layer for capturing into the trailing shield because the magnetic fluxes coming from the tip end portion of the main magnetic-pole layer go through the magnetic layer before being captured into the trailing shield.
摘要:
A magnetic head slider includes at least one thin-film magnetic head formed on a trailing surface of the magnetic head slider, and an ABS to be faced a magnetic disk in operation. At least a part of the ABS is made of a giant magnetostrictive material.
摘要:
A TMR element includes a lower electrode layer, a TMR multi-layer stacked on the lower electrode layer, and an upper electrode layer stacked on the TMR multi-layer. The TMR multi-layer includes a tunnel barrier layer having a three-layered structure of a first crystalline layer, a crystalline semiconductor layer and a second crystalline insulation layer stacked in this order.
摘要:
In manufacturing the thin film magnetic head, the rear end face of the MR element and the rear end face of a resistive film pattern are determined with high precision using a mask pattern, in which a first opening and a second opening are collectively formed. The first and second openings are located side by side in a track-width direction. The first opening includes a first edge extending across the MR film in the track-width direction, and the second opening includes a second edge located at a given interval, as measured in a direction orthogonal to the track-width direction, from the first edge, and extending in the track-width direction. In the step of polishing for forming a magnetic-recording-medium-facing-surface, the amount of polishing is determined by monitoring the resistance change of the resistive film pattern, thereby reducing the dimension errors in the MR height when manufacturing the MR element.
摘要:
A curable resin composition includes (A) a cationically polymerizable-compound, (B) a cationic photopolymerization initiator, and (C) an epoxidized polyisoprene containing an epoxy group at 0.15 to 2.5 meq/g in the molecule and having a number-average molecular weight of 15000 to 200000. The curable resin composition shows excellent elongation properties and high break elongation even in a cured state and can give a cured product having superior compatibility, transparency, flexibility and waterproofness. Accordingly, the composition is suitable for use as adhesives, coating agents, encapsulating materials, inks, sealing materials and the like.
摘要:
Provided is a thin film magnetic head capable of suppressing an occurrence of a track erase, decreasing an influence on a magnetoresistive element caused by a magnetic flux generated from a thin film coil, and further decreasing the parasitic capacity. The thin film magnetic head has, in order in a stacked direction, a first magnetic shield layer, a magnetoresistive element, a second magnetic shield layer, a third magnetic shield layer, a main magnetic pole layer and a return yoke layer. A width in a track width direction of at least one of the first and the second magnetic shield layers is smaller than widths in a track width direction of the third magnetic shield layer and the return yoke layer.