Abstract:
A method of transmitting a broadcast signal includes performing Reed-Solomon (RS) frame encoding and Cyclic Redundancy Check (CRC) encoding on first mobile service data to form a primary RS frame and on second mobile service data to form a secondary RS frame; encoding on at least the first mobile service data or the second mobile service data, in serial concatenated convolution code (SCCC) block units; encoding signaling information including transmission parameters, the transmission parameters including SCCC encoding information and RS frame encoding information; formatting a data group including the encoded first mobile service data and second mobile service data, wherein the first mobile service data are included in a first region within the data group and the second mobile service data are included in a second region within the data group, the second region being different from the first region; and transmitting the broadcast signal including the formatted data group.
Abstract:
A digital television system performing modulation/demodulation by VSB (vestigial side band) is provided. The invention includes a VSB transmitter including an additional error correction encoder designed such that a signal mapping of a TCM encoder is considered, a multiplexer (MUX), a TCM encoder operating in correspondence with state transition processes of the additional error correction encoder, and a signal transmission part including an RF converter. The invention further includes a VSB receiver including a signal receiver part receiving a signal transmitted from the transmitter, a TCM decoder, a signal processing part including a derandomizer, and an additional error correction decoder part.
Abstract:
A digital broadcasting system and a method of processing data are disclosed, which are robust to error when mobile service data are transmitted. To this end, additional encoding is performed for the mobile service data, whereby it is possible to strongly cope with fast channel change while giving robustness to the mobile service data.
Abstract:
A digital broadcasting system and a data processing method are disclosed. A receiver receives a broadcast signal including mobile service data and main service data. A known data detector detects known data from the broadcast signal. An equalizer performs channel equalization on the mobile service data received by means of the detected known data. An RS frame decoder acquires an RS frame from the channel-equalized mobile service data. A management processor extracts a Generic Stream Encapsulation (GSE) packet from a GSE Base Band (BB) constructing one row of the RS frame, and calculates an IP datagram from the extracted GSE packet. A presentation processor displays broadcast data using data contained in the calculated IP datagram.
Abstract:
A transmitting system and a method of transmitting digital broadcast signal are disclosed. The method of transmitting digital broadcast signal includes generating signaling data including a transmission parameter, wherein the transmission parameter includes a protocol version field identifying between a first transmission mode and a second transmission mode, forming a data group including mobile service data and the signaling data, forming mobile service data packets including the mobile service data and the signaling data in the data group, transmitting the digital broadcast signal including the data group.
Abstract:
According to one embodiment, a digital broadcasting system includes an RS (Reed-Solomon) encoder configured to encode mobile service data for FEC (Forward Error Correction) to build RS frames including the mobile service data and a signaling information table, a signaling encoder configured to encode signaling information including fast information channel (FIC) data, and transmission parameter channel (TPC) data, a group formatter configured to form data groups, wherein at least one of the data groups includes encoded mobile service data, known data sequences, the FIC data and the TPC data, and a transmission unit configured to transmit the broadcast signal including a parade of the data groups.
Abstract:
A DTV transmitting system includes a frame encoder, a randomizer, a block processor, a group formatter, a deinterleaver, and a packet formatter. The frame encoder builds an enhanced data frame and adds parity data into the data frame. The frame encoder further divides the data frame into first and second sub-frames including first and second portions of the parity data, respectively, and permutes a plurality of the first sub-frames and a plurality of the second sub-frames, respectively. The randomizer randomizes enhanced data in the permuted sub-frames, and the block processor codes the randomized data at a rate of 1/N1. The group formatter forms a group of enhanced data having one or more data regions and inserts the 1/N1 coded data into at least one of the data regions. The deinterleaver deinterleaves the group of enhanced data, and the packet formatter formats the deinterleaved data into enhanced data packets.
Abstract:
A method of processing data in a receiving system, the method includes receiving a broadcast signal including a plurality of data groups that include broadcast data and first parity data; demodulating the received broadcast signal; performing first decoding on the broadcast data in a frame based on the first parity data for error correction, wherein the frame is formed based on the plurality of data groups in the demodulated broadcast signal and wherein the plurality of groups have a same size; and de-randomizing the first decoded broadcast data, wherein second decoding on the broadcast data in the frame is selectively performed, wherein the broadcast signal further includes signaling information that contains a transmission parameter to indicate whether second encoding was performed on the broadcast data in a transmitting system, wherein, when the transmission parameter indicates that the second encoding was performed on the broadcast data.
Abstract:
A method of transmitting broadcast signals includes forward error correction (FEC) encoding mobile data; interleaving the FEC encoded mobile data; encoding signaling information for the mobile data; mapping the interleaved mobile data and the encoded signaling information into a data unit, wherein the data unit includes a first region and a second region, wherein the first region is concatenated with the second region, wherein the first region includes known data and the encoded signaling information, and wherein the second region includes known data and the encoded mobile data; and transmitting the broadcast signals including the data unit, wherein the data unit is multiplexed with a data unit of main data in a specific time period, wherein the signaling information includes information of the data unit having the interleaved mobile data.
Abstract:
A digital broadcasting system which is robust against an error when mobile service data is transmitted and a method of processing data are disclosed. The mobile service data is subjected to an additional coding process and the coded mobile service data is transmitted. Accordingly, it is possible to cope with a serious channel variation while applying robustness to the mobile service data.