摘要:
Disclosed is a method for depositing a metal layer on an interconnect structure for a semiconductor wafer. In the method, a metal conductor is covered by a capping layer and a dielectric layer. The dielectric layer is patterned so as to expose the capping layer. The capping layer is then sputter etched to remove the capping layer and expose the metal conductor. In the process of sputter etching, the capping layer is redeposited onto the sidewall of the pattern. Lastly, at least one layer is deposited into the pattern and covers the redeposited capping layer.
摘要:
A semiconductor structure that includes a Co-containing liner disposed between an oxygen-getter layer and a metal-containing conductive material is provided. The Co-containing liner, the oxygen-getter layer and the metal-containing conductive material form MOL metallurgy where the Co-containing liner replaces a traditional TiN liner. By “Co-containing” is meant that the liner includes elemental Co alone or elemental Co and at least one of P or B. In order to provide better step coverage of the inventive Co-containing liner within a high aspect ratio contact opening, the Co-containing liner is formed via an electroless deposition process.
摘要:
An interconnect structure and method of making the same are provided. The interconnect structure includes a dielectric layer having a patterned opening, a metal feature disposed in the patterned opening, and a dielectric cap overlying the metal feature. The dielectric cap has an internal tensile stress, the stress helping to avoid electromigration from occurring in a direction away from the metal line, especially when the metal line has tensile stress.
摘要:
A structure and method of forming an improved metal cap for interconnect structures is described. The method includes forming an interconnect feature in an upper portion of a first insulating layer; deposing a dielectric capping layer over the interconnect feature and the first insulating layer; depositing a second insulating layer over the dielectric capping layer; etching a portion of the second insulating layer to form a via opening, wherein the via opening exposes a portion of the interconnect feature; bombarding the portion of the interconnect feature for defining a gauging feature in a portion of the interconnect feature; etching the via gauging feature for forming an undercut area adjacent to the interconnect feature and the dielectric capping layer; depositing a noble metal layer, the noble metal layer filling the undercut area of the via gauging feature to form a metal cap; and depositing a metal layer over the metal cap.
摘要:
An interconnect structure having improved electromigration (EM) reliability is provided. The inventive interconnect structure avoids a circuit dead opening that is caused by EM failure by incorporating a EM preventing liner at least partially within a metal interconnect. In one embodiment, a “U-shaped” EM preventing liner is provided that abuts a diffusion barrier that separates conductive material from the dielectric material. In another embodiment, a space is located between the “U-shaped” EM preventing liner and the diffusion barrier. In yet another embodiment, a horizontal EM liner that abuts the diffusion barrier is provided. In yet a further embodiment, a space exists between the horizontal EM liner and the diffusion barrier.
摘要:
The invention provides a method of forming a wiring layer in an integrated circuit structure that forms an organic insulator, patterns the insulator, deposits a liner on the insulator, and exposes the structure to a plasma to form pores in the insulator in regions next to the liner. The liner is formed thin enough to allow the plasma to pass through the liner and form the pores in the insulator. During the plasma processing, the plasma passes through the liner without affecting the liner. After the plasma processing, additional liner material may be deposited. After this, a conductor is deposited and excess of portions of the conductor are removed from the structure such that the conductor only remains within patterned portions of the insulator. This method produces an integrated circuit structure that has an organic insulator having patterned features, a liner lining the patterned features, and a conductor filling the patterned features. The insulator includes pores along surface areas of the insulator that are in contact with the liner and the pores exist only along the surface areas that are in contact with the liner (the liner is not within the pores).
摘要:
In copper backend integrated circuit technology, advanced technology using low-k organic-based interlayer dielectrics have a problem of carbon contamination that dos not occur in circuits using oxide as dielectric. A composite liner layer for the copper lines uses Ti as the bottom layer, which has the property of gettering carbon and other contaminants. The known problem with Ti of reacting with copper to form a high resistivity compound is avoided by adding a layer of TiN, which isolates the Ti and the copper.
摘要:
An interconnect structure having improved electromigration (EM) reliability is provided. The inventive interconnect structure avoids a circuit dead opening that is caused by EM failure by incorporating a EM preventing liner at least partially within a metal interconnect. In one embodiment, a “U-shaped” EM preventing liner is provided that abuts a diffusion barrier that separates conductive material from the dielectric material. In another embodiment, a space is located between the “U-shaped” EM preventing liner and the diffusion barrier. In yet another embodiment, a horizontal EM liner that abuts the diffusion barrier is provided. In yet a further embodiment, a space exists between the horizontal EM liner and the diffusion barrier.
摘要:
A structure and method of forming an improved metal cap for interconnect structures is described. The method includes forming an interconnect feature in an upper portion of a first insulating layer; deposing a dielectric capping layer over the interconnect feature and the first insulating layer; depositing a second insulating layer over the dielectric capping layer; etching a portion of the second insulating layer to form a via opening, wherein the via opening exposes a portion of the interconnect feature; bombarding the portion of the interconnect feature for defining a gauging feature in a portion of the interconnect feature; etching the via gauging feature for forming an undercut area adjacent to the interconnect feature and the dielectric capping layer; depositing a noble metal layer, the noble metal layer filling the undercut area of the via gauging feature to form a metal cap; and depositing a metal layer over the metal cap.
摘要:
An interconnect structure having improved electromigration (EM) reliability is provided. The inventive interconnect structure avoids a circuit dead opening that is caused by EM failure by incorporating a EM preventing liner at least partially within a metal interconnect. In one embodiment, a “U-shaped” EM preventing liner is provided that abuts a diffusion barrier that separates conductive material from the dielectric material. In another embodiment, a space is located between the “U-shaped” EM preventing liner and the diffusion barrier. In yet another embodiment, a horizontal EM liner that abuts the diffusion barrier is provided. In yet a further embodiment, a space exists between the horizontal EM liner and the diffusion barrier.