Abstract:
A memory cell with at least two detectable states among which is an unprogrammed state, comprising, in series between two terminals of application of a read voltage, at least one first branch comprising: a pre-read stage comprising, in parallel, two switchable resistors having different values with a first predetermined difference; and a programming stage formed of a polysilicon programming resistor, a terminal of the programming resistor being accessible by a programming circuit capable of causing an irreversible decrease in its value.
Abstract:
A method for protecting an integrated circuit. According to the method, the start-up of all, or part, of the circuit is determined in the presence of a key which is recorded in a non-volatile manner in the circuit, following the production thereof, and depends on at least one first parameter which is present in a non-volatile manner in the circuit after the production thereof.
Abstract:
An integrated cell for extracting a binary value based on a value difference between two resistors values, including connection circuitry for a binary reading of the sign of the difference between the resistors, and connection circuitry for a modification of the value of one of the resistors to make the sign of the difference invariable.
Abstract:
A method for protecting at least one first datum to be stored in an integrated circuit, including, upon storage of the first datum, performing a combination with at least one second physical datum coming from at least one network of physical parameters, and only storing the result of this combination, and in read mode, extracting the stored result and using the second physical datum to restore the first datum.
Abstract:
The invention relates to a memory cell with a binary value consisting of two parallel branches. Each of said branches comprises: at least one polycrystalline silicon programming resistor (Rp1, Rp2), which is connected between a first supply terminal (1) and a point or terminal for the differential reading (4, 6) of the memory cell state; and at least one first switch (MNP1, MNP2) which, during programming, connects one of said read terminals to a second supply terminal (2).
Abstract:
A method of transmission between two elements chosen from a terminal and a transponder, each element including an oscillating circuit, a modulator and a demodulator, including simultaneously performing a transmission in amplitude modulation of a signal transmitted from a first to a second element and a transmission of a signal from the second to the first element adapted to being submitted to a phase demodulation in the latter, and wherein the amplitude modulation rate is smaller than 100%.
Abstract:
A terminal for generating an electromagnetic field adapted to cooperate with at least one transponder when the transponder enters the electromagnetic field, the terminal including circuitry for determining the distance separating the at least one transponder from the terminal without requiring any transmission from the transponder to the terminal. In one example, the terminal also includes a phase regulation loop that regulates the phase of a signal in an oscillating circuit of the terminal with respect to a reference value.
Abstract:
An electromagnetic transponder of the type including an oscillating circuit upstream of a rectifier adapted to providing a D.C. supply voltage to an electronic circuit, the electronic circuit including circuitry for transmitting digitally coded information, and the transponder including circuitry for detuning the oscillating circuit with respect to a determined frequency, the circuitry for detuning the oscillating circuit being used when the transponder has to transmit information while it is very close to a read/write terminal.
Abstract:
The present invention relates to a method of data transmission over an A.C. power supply line of a load to be cyclically powered, including organizing a switching of the A.C. supply voltage according to a coding of the data to be transmitted and outside cyclic load supply periods.
Abstract:
A method for assisting with positioning of an electromagnetic transponder by a user with respect to a terminal, wherein: a first value of the current in an oscillating circuit of the terminal is periodically measured; a second value of a ratio between a no-load value of this current, stored when no transponder is in the field of the terminal, and the first value, is calculated; and pieces of information intended for the user are controlled according to said second value.