Abstract:
Embodiments of the disclosure are drawn to apparatuses, systems, methods, and memories that are capable of performing pattern matching operations within a memory device. The pattern matching operations may be performed on data stored within the memory based on a pattern stored in a register. The result of the pattern matching operation may be provided by the memory. The data may be retrieved from a memory array for the pattern matching operation by a read operation, a refresh operation, an error correction operation, and/or a pattern matching operation. The data may be retrieved from incoming data input lines instead of or in addition to the memory array. How the data is stored or retrieved for pattern matching operations may be controlled by a memory controller.
Abstract:
Memory devices and systems with automatic background precondition upon powerup, and associated methods, are disclosed herein. In one embodiment, a memory device includes a memory array having a plurality of memory cells and a fuse array configured to store precondition data. The precondition data can identify a portion of the memory array, specify a predetermined precondition state, or a combination thereof. When the memory device powers on, the memory device can be configured to automatically retrieve the precondition data from the fuse array and/or to write memory cells in the portion of the memory array to the predetermined precondition state before executing an access command.
Abstract:
Methods, systems, and devices for phase charge sharing are described. In some memory systems or memory devices, one or more decoders may be used to bias access lines of a memory die. The decoders may transfer voltage or current between a first conductive line of the decoder and a second conductive line of the decoder via a shorting device. Transferring the voltage or current may be performed as part of or in association with an operation (e.g., an activate or pre-charge operation) to access one or more memory cells of the memory die. In some examples, the decoders may transfer voltage or current between a first conductive line of a decoder associated with a first refresh activity and a second conductive line of the decoder associated with a second refresh activity via a shorting device.
Abstract:
Memory devices and systems with partial array refresh control over memory regions in a memory array, and associated methods, are disclosed herein. In one embodiment, a memory system includes a memory controller and a memory device operably connected to the memory controller. The memory device includes (i) a memory array having a plurality of memory cells arranged in a plurality of memory regions and (ii) inhibit circuitry. In some embodiments, the inhibit circuitry is configured to disable one or more memory regions of the plurality of memory regions from receiving refresh commands such that memory cells of the one or more memory regions are not refreshed during refresh operations of the memory device. In these and other embodiments, the memory controller is configured to track memory regions that include utilized memory cells and/or to write data to the memory regions in accordance with a programming sequence of the memory device.
Abstract:
Methods, systems, and devices for phase charge sharing are described. In some memory systems or memory devices, one or more decoders may be used to bias access lines of a memory die. The decoders may transfer voltage or current between a first conductive line of the decoder and a second conductive line of the decoder via a shorting device. Transferring the voltage or current may be performed as part of or in association with an operation (e.g., an activate or pre-charge operation) to access one or more memory cells of the memory die. In some examples, the decoders may transfer voltage or current between a first conductive line of a decoder associated with a first refresh activity and a second conductive line of the decoder associated with a second refresh activity via a shorting device.
Abstract:
Apparatuses and methods including a plurality of memory units are disclosed. An example apparatus includes a plurality of memory units. Each of the plurality of memory units include a master/slave identification (ID) node coupled to a first voltage source node via a resistive element. Each of the plurality of memory units further include a master/slave ID circuit configured to determine whether a memory unit is a master memory unit or a slave memory unit based on a voltage level detected at the master/slave ID node. The master/slave ID node of each of the plurality of memory units other than a first memory unit is further coupled to a respective second voltage source node via a through—substrate via (TSV) of a respective adjacent memory unit of the plurality of memory units.