Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
A wearable ophthalmic device is disclosed. The device may include an outward facing head-mounted light field camera to receive light from a user's surroundings and to generate numerical light field image data. The device may also include a light field processor to access the numerical light field image data, to obtain an optical prescription for an eye of the user, and to computationally introduce an amount of positive or negative optical power to the numerical light field image data based on the optical prescription to generate modified numerical light field image data. The device may also include a head-mounted light field display to generate a physical light field corresponding to the modified numerical light field image data.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
An augmented reality display system is configured to use fiducial markers to align 3D content with real objects. The augmented reality display system can optionally include a depth sensor configured to detect a location of a real object. The augmented reality display system can also include a light source configured to illuminate at least a portion of the object with invisible light, and a light sensor configured to form an image using reflected portion of the invisible light. Processing circuitry of the display system can identify a location marker based on the difference between the emitted light and the reflected light and determine an orientation of the real object based on the location of the real object and a location of the location marker.
Abstract:
Methods and systems for reductions in switching between depth planes of a multi-depth plane display system are disclosed. The display system may be an augmented reality display system configured to provide virtual content on a plurality of depth planes using different wavefront divergence. The system may monitor the fixation points based upon the gaze of each of the user's eyes, with each fixation point being a three-dimensional location in the user's field of view. Location information of virtual objects to be presented to the user are obtained, with each virtual object being associated with a depth plane. In some embodiments, the depth plane on which the virtual object is to be presented is modified based upon the fixation point of the user's eyes. For example, where the user is switching their fixation between virtual objects on two different depth planes, the display system may be configured to modify the presentation of one of the objects such that both objects are placed on the same depth plane.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.
Abstract:
Configurations are disclosed for a health system to be used in various healthcare applications, e.g., for patient diagnostics, monitoring, and/or therapy. The health system may comprise a light generation module to transmit light or an image to a user, one or more sensors to detect a physiological parameter of the user's body, including their eyes, and processing circuitry to analyze an input received in response to the presented images to determine one or more health conditions or defects.