Abstract:
A virtual user interface (VUI) is provided. The VUI (120) can include a touchless sensing unit (110) for identifying and tracking at least one object in a touchless sensory field, a processor (130) communicatively coupled to the sensing unit for capturing a movement of the object within the touchless sensory field, and a driver (132) for converting the movement to a coordinate object (133). In one aspect, the VUI can implement an applications program interface (134) for receiving the coordinate object and providing the coordinate object to the virtual user interface (VUI). An object movement within the sensory field of the VUI can activate user components in a User Interface (150).
Abstract:
The invention concerns a communication device (102) and a method (200) for providing a personalized ring-back to a first user of the first communication device (102), when the first user initiates a phone call with a second user of a second communication device (104). In one arrangement, the method can include the steps of detecting (204) reception of a ring-back signal at the first communication device (102) received from a communication network (108), retrieving (206) a multimedia file in the first communication device (102), and playing (208) the multimedia file in the first communication device (102) for at least the duration of the ring-back signal.
Abstract:
A method (200) and system (220) for range detection is provided. The system can include a sensing unit (110) for detecting a location and movement of a first object (401), and a processor (107) for providing a measure of the movement. The processor can convert the measure to a coordinate signal for moving a second object (124) in accordance with a location and movement of the first object. The system can include a pulse shaper (109) for producing a pulse shaped signal (167) and a phase detector (101) for identifying a movement from a reflected signal (166). A portion of the pulse shaped signal can be a frequency modulated region (312), a constant frequency region (316), or a chirp region (324). In one arrangement, the pulse shaper can be a cascade of all-pass filters (515) for providing phase dispersion.
Abstract:
A text to speech system (100) uses differential voice coding (230, 416) to compress a database of digitized speech waveform segments (210). A seed waveform (535) is used to precondition each speech waveform prior to encoding which, upon encoding, provides a seeded preconditioned encoded speech token (550). The seed portion (541) may be removed and the preconditioned encoded speech token portion (542) may be stored in a database for text to speech synthesis. When speech it to be synthesized, upon requesting the appropriate speech waveform for the present sound to be produced, the seed portion is preappended to the preconditioned encoded speech token for differential decoding.
Abstract:
A system (100) and method (400) for monitoring a data channel for discontinuous transmission activity can include a monitoring unit (210), in which the monitoring unit can identify a source of modifying the discontinuous transmission activity based on receipt of an identifier packet, and an equalizer (214) coupled to the monitoring unit. When the monitoring unit determines that an identifier packet has been modified by a source over a communication channel, the equalizer can apply a compensatory equalization associated with the identified source to compensate for equalization applied at the source.
Abstract:
An apparatus (213) and corresponding methods (FIG. 7) to facilitate maintaining crypto synchronization while processing communication signals in a communication unit includes a vocoder (215) configured to convert input audio band signals to vocoder output frames; a crypto processor (217) configured to encrypt the vocoder output frames to provide encrypted output frames; and a synchronizer (219) configured to substitute in a predetermined manner synchronization information corresponding to an encryption state of the crypto processor for a portion of the encrypted data in a portion of the encrypted output frames to provide resultant output synchronization frames suitable for synchronizing a decryption process at a target communication unit.
Abstract:
A system, method and computer readable medium for adjusting volume levels of a Musical Instrument Digital Interface (MIDI) sound file for optimizing play on a sound device. The method on an information processing system includes calculating a first set of loudness levels for each instrument in a MIDI sound file and calculating a second set of loudness levels corresponding to an audio output range of a sound device. The method further includes generating a mapping between the first set of loudness levels and the second set of loudness levels corresponding to the audio output range of the sound device. The method further includes generating a gain term for each note in the MIDI sound file and modifying the MIDI sound file using the second set of loudness levels and the gain term for each note in the MIDI sound file.
Abstract:
A disposable tool suitable for use in orthopedic alignment that registers points of interest on a first and second bone and transmits location data related to the points of interest to the sensor to assess orthopedic alignment with the points of interest. A display can report and visually display alignment information in real-time.
Abstract:
A navigation system is provided to direct control of a user interface work-flow during a procedure. Such a need can arise in sterile environments were touchless interaction is preferable over physical contact. The system includes a wand and receiver for controlling a pagination and parameter entry of the work-flow, a processor to compare wand movement profiles, a clock for limiting a time window between the comparison, and a controller for activating a user interface control in the workflow when a wand movement profile or gesture is recognized. The comparison can be based on the wand's direction, orientation and movement to and from various locations. Other embodiments are disclosed.
Abstract:
A low-cost and compact electronic device toolset is provided for orthopedic assisted navigation. The toolset comprises wireless sensorized devices that communicate directly with one another. A computer workstation is an optional component for further visualization. The sensorized devices are constructed with low-cost transducers and are self-powered. The toolset is disposable and incurs less hospital maintenance and overhead. As one example, the toolset reports anatomical alignment during a surgical workflow procedure. Other embodiments are disclosed.