Abstract:
A video decoding method is implemented by a computer having multiple parallel processing units. A stream of data elements is received, some of which encode video content. The stream comprises marker sequences, each marker sequence comprising a marker which does not encode video content. A known pattern of data elements occurs in each marker sequence. A respective part of the stream is supplied to each parallel processing unit. Each parallel processing unit processes the respective part of the stream, whereby multiple parts of the stream are processed in parallel, to detect whether any of the multiple parts matches the known pattern of data elements, thereby identifying the markers. The encoded video content is separated from the identified markers. The separated video content is decoded, and the decoded video content outputted on a display.
Abstract:
Techniques are described for split processing of streaming segments in which processing operations are split between a source component and a decoder component. For example, the source component can perform operations for receiving a streaming segment, demultiplexing the streaming segment to separate a video content bit stream, scanning the video content bit stream to find a location at which decoding can begin (e.g., scanning up to a first decodable I-picture, for which header parameter sets are available for decoding), and send the video content bit stream to the decoder component beginning at the location (e.g., the first decodable I-picture). The decoder component can begin decoding at the identified location (e.g., the first decodable I-picture). The decoder component can also discard subsequent pictures that reference a reference picture not present in the video content bit stream (e.g., when decoding starts with a new streaming segment).
Abstract:
In a video processing system including a video decoder, to handle frequent changes in the bit rate of an encoded bitstream, a video decoder can be configured to process a change in bit rates without reinitializing. The video decoder can be configured to reduce memory utilization. The video decoder can be configured both to process a change in bit rate without reinitializing while reducing memory utilization. In one implementation, the video processing system can include an interface between an application running on a host processor and the video decoder which allows the video decoder to communicate with the host application about the configuration of the video decoder.
Abstract:
Syntax structures that indicate the completion of coded regions of pictures are described. For example, a syntax structure in an elementary bitstream indicates the completion of a coded region of a picture. The syntax structure can be a type of network abstraction layer unit, a type of supplemental enhancement information message or another syntax structure. For example, a media processing tool such as an encoder can detect completion of a coded region of a picture, then output, in a predefined order in an elementary bitstream, syntax structure(s) that contain the coded region as well as a different syntax structure that indicates the completion of the coded region. Another media processing tool such as a decoder can receive, in a predefined order in an elementary bitstream, syntax structure(s) that contain a coded region of a picture as well as a different syntax structure that indicates the completion of the coded region.
Abstract:
A video decoding method is implemented by a computer having multiple parallel processing units. A stream of data elements is received, some of which encode video content. The stream comprises marker sequences, each marker sequence comprising a marker which does not encode video content. A known pattern of data elements occurs in each marker sequence. A respective part of the stream is supplied to each parallel processing unit. Each parallel processing unit processes the respective part of the stream, whereby multiple parts of the stream are processed in parallel, to detect whether any of the multiple parts matches the known pattern of data elements, thereby identifying the markers. The encoded video content is separated from the identified markers. The separated video content is decoded, and the decoded video content outputted on a display.
Abstract:
Techniques are described for communicating encoded data using start code emulation prevention. The described techniques include obtaining at least one partially encrypted packet, identifying at least one portion of the packet that is unencrypted, and determining that the identified unencrypted portion(s) emulates a start code. Start code emulation prevention data or emulation prevention bytes (EPBs) may be inserted into only the encrypted portion of the packet. The modified packet may be communicated to another device/storage, along with an indication of which portion(s) of the packet are unencrypted. Upon receiving the packet and indication, the receiving device may identify and remove the EPBs in the identified unencrypted portion(s) of the packet, and decrypt the packet to recover the data. In some aspects, upon identifying the indication, the receiving device may only search for EPBs in the unencrypted portion(s) of the packet, thus yielding a more efficient start code emulation prevention process.
Abstract:
Video image stabilization provides better performance on a generic platform for computing devices by evaluating available multimedia digital signal processing components, and selecting the available components to utilize according to a hierarchy structure for video stabilization performance for processing parts of the video stabilization. The video stabilization has improved motion vector estimation that employs refinement motion vector searching according to a pyramid block structure relationship starting from a downsampled resolution version of the video frames. The video stabilization also improves global motion transform estimation by performing a random sample consensus approach for processing the local motion vectors, and selection criteria for motion vector reliability. The video stabilization achieves the removal of hand shakiness smoothly by real-time one-pass or off-line two-pass temporal smoothing with error detection and correction.
Abstract:
A graphics pipeline with components that process frames by portions (e.g., pixels or rows) or slices to reduce end-to-end latency. Components of a pipeline process portions of a same frame at the same time. For example, as graphics data for a frame is being generated and fills a framebuffer, once a certain portion of video data less than the whole frame (slice or sub-frame) becomes available, before the corresponding frame is finished filling the framebuffer, the next pipeline component after the framebuffer, for instance a video processor for color conversion or an encoder, begins to process the portion of the frame. While one portion of a frame is accumulating in the frame buffer, another portion of the same frame is being encoded by an encoder, and another portion of the frame might be being packaged by a multiplexer, and a network socket might start streaming the multiplexed portion.
Abstract:
Data unit identification for compressed video streams is described. In one or more implementations, a compressed video stream is received at a computing device and a determination is made as to whether prior knowledge is available that relates to the compressed video stream. Responsive to the determination that prior knowledge is available that relates to the compressed video stream, the prior knowledge is employed by the computing device to perform data unit identification for the compressed video stream. In one or more implementations, SIMD instructions are utilized to perform pattern (0x00 00) search in a batch mode. Then a byte-by-byte search is performed to confirm whether the pattern, 0x00 00, found is part of a start code, 0x00 00 01, or not.
Abstract:
A media processing tool adds custom data to an elementary media bitstream or media container. The custom data indicates nominal range of samples of media content, but the meaning of the custom data is not defined in the codec format or media container format. For example, the custom data indicates the nominal range is full range or limited range. For playback, a media processing tool parses the custom data and determines an indication of media content type. A rendering engine performs color conversion operations whose logic changes based at least in part on the media content type. In this way, a codec format or media container format can in effect be extended to support full nominal range media content as well as limited nominal range media content, and hence preserve full or correct color fidelity, while maintaining backward compatibility and conformance with the codec format or media container format.