Abstract:
In a blower fan according to a preferred embodiment of the present invention, a side wall portion includes a tongue portion arranged to project between an air outlet and an impeller. A side surface of the tongue portion includes a tongue portion tip arranged to touch a first imaginary plane including a central axis; a first tongue portion side surface arranged to extend from the tongue portion tip along an outer envelope of the impeller; and a second tongue portion side surface arranged to extend from the tongue portion tip toward a side edge, the side edge being a line of intersection of the air outlet and the side wall portion. The second tongue portion side surface is arranged to cross a second imaginary plane including the central axis and touching the side edge.
Abstract:
In a bearing mechanism according to a preferred embodiment of the present invention, a seal portion in which a surface of a lubricating oil is located is defined in a seal gap defined between an outer circumferential surface of a first tubular portion and an inner circumferential surface of a second tubular portion. The first tubular portion includes, in an area where the outer circumferential surface of the first tubular portion is in contact with the lubricating oil, a maximum outside diameter portion at which the outside diameter of the first tubular portion is greatest, an annular shoulder portion including a surface facing toward the surface of the lubricating oil and at which the outside diameter is smaller than at the maximum outside diameter portion, and an inclined portion at which the outside diameter gradually decreases from the annular shoulder portion toward the surface of the lubricating oil.
Abstract:
A blower fan includes a heat source contact portion. A side wall portion includes a tongue portion. In a plan view, The heat source contact portion is arranged to cover a portion of a region surrounded by a third imaginary straight line tangent to an outer circumferential surface of a blade support portion and extending in parallel with the second imaginary straight line toward the air outlet in the first region, a fourth imaginary straight line tangent to the outer circumferential surface of the blade support portion and extending in parallel with the first imaginary straight line in the third region, the outer circumferential surface of the blade support portion, and the air outlet.
Abstract:
A porous oil-impregnated sleeve is used for a fluid dynamic pressure bearing. The sleeve includes an inner surface, a first axial end face, a first recessed portion, and a first dynamic pressure generating groove. The first recessed portion is positioned on the other side of a line segment, which connects one-side end portion of the inner surface with an inner end portion of the first axial end face, in a cross-section including the central axis. A bottom portion of the first recessed portion, which has the longest distance between itself and the line segment, is positioned closer to the other side than a bottom portion of the first dynamic pressure generating groove in the axial direction.
Abstract:
A base plate of a motor includes an inner bottom plate portion and an elevated portion. A land portion is arranged on an upper surface of a portion of a circuit board which overlaps with the inner bottom plate portion in a plan view, or on a portion of the circuit board which overlaps with the elevated portion in the plan view. A conducting wire extending from a coil is electrically connected to the land portion. This structure enables the conducting wire to be connected to the land portion on the circuit board without the conducting wire being drawn outward beyond an outer circumferential end portion of the base plate. The axial position of the conducting wire connected to the land portion and the axial position of the base plate at least partially overlap with each other.
Abstract:
A heat module includes a fan and a heat pipe. A flat portion of the heat pipe includes a recessed portion being recessed toward a center of the heat pipe in a cross section. A heat receiving portion arranged between the heat source and the heat pipe includes a heat source contact portion arranged to be in thermal contact with the heat pipe. In at least a portion of the heat pipe which extends between a portion of the heat pipe which is in thermal contact with the fan contact portion and a portion of the heat pipe which is in thermal contact with the heat source contact portion, a difference between a maximum axial height of the heat pipe and a minimum axial height of a portion of the heat pipe where the recessed portion is defined is smaller than a wall thickness of the recessed portion.
Abstract:
A blower fan includes a heat source contact portion. A side wall portion includes a tongue portion. In a plan view, The heat source contact portion is arranged to cover a portion of a region surrounded by a third imaginary straight line tangent to an outer circumferential surface of a blade support portion and extending in parallel with the second imaginary straight line toward the air outlet in the first region, a fourth imaginary straight line tangent to the outer circumferential surface of the blade support portion and extending in parallel with the first imaginary straight line in the third region, the outer circumferential surface of the blade support portion, and the air outlet.
Abstract:
A fan includes a stationary portion; a bearing mechanism; and a rotating portion. The rotating portion includes an impeller including a plurality of blades and an annular impeller cup arranged to support the blades. The rotor portion includes a cover portion and a cylindrical portion. The impeller is fixed to an outer circumferential surface of the cylindrical portion of the rotor portion. The outer circumferential surface of the cylindrical portion and an inner circumferential surface of the impeller cup have a joining portion therebetween. At least one of the outer circumferential surface of the cylindrical portion and the inner circumferential surface of the impeller cup includes a groove portion recessed radially from the joining portion. The groove portion includes an upward facing surface. An adhesive is arranged in the groove portion. At least a portion of the adhesive is arranged above the upward facing surface of the groove portion.
Abstract:
A sleeve housing of a bearing mechanism according to a preferred embodiment of the present invention includes a cylindrical portion arranged to cover outer circumferences of a sleeve and a plate portion, and a bottom portion arranged to close a lower portion of the cylindrical portion. The bottom portion includes a plurality of projecting portions arranged in a circumferential direction in an upper surface of the bottom portion. Each projecting portion is arranged to project upward to be in contact with a lower surface of the sleeve. Each of the projecting portions and the plate portion are arranged radially opposite each other. At least a portion of an adhesive is arranged to exist between an outer circumferential surface of the sleeve and an inner circumferential surface of the cylindrical portion.
Abstract:
A motor includes a rotating portion and a stationary portion. The stationary portion includes a shaft component which includes an inner shaft portion and an outer shaft portion, an upper plate portion, and a lower plate portion. The upper plate portion is disposed in one side of the shaft component and extends radially outward from the one side of the shaft component. The lower plate portion is disposed on the other side of the shaft component and extends radially outward from the other side of the shaft component. The rotating portion includes a sleeve portion. The inner shaft portion and the outer shaft portion are fixed by an adhesive. An adhesive retaining portion is provided between an outer peripheral portion of the inner shaft portion and an inner peripheral portion of the outer shaft portion.