摘要:
An electrode for a lithium battery having a thin film composed of active material capable of lithium storage and release, e.g., a microcrystalline or amorphous silicon thin film, provided on a current collector, the electrode being characterized in that a constituent of the current collector is diffused into the thin film.
摘要:
Method of increasing charge-discharge capacity of a nonaqueous electrolyte secondary battery including a positive electrode containing a positive active material, a negative electrode containing a negative active material other than metallic lithium and a nonaqueous electrolyte. The battery is charged at an end-of-charge voltage of at least 4.3V. The positive active material includes lithium cobaltate in which Zr and Mg are contained by mixing their source materials in the preparation of the positive active material by a heat treatment, the Zr and Mg being contained in the lithium cobaltate in a total amount of not greater than 3 mole %, the Zr after heat treatment being present as particles of a Zr-containing compound that are sintered with particle surfaces of the lithium cobaltate, and the Zr being detected in the particles of the Zr-containing compound but not in the lithium cobaltate particles.
摘要:
A nonaqueous electrolyte secondary battery in which the decomposition of an electrolyte solution is reduced exhibits high coulombic efficiency and excellent charge and discharge cycle performance, and has high energy density. This nonaqueous electrolyte secondary battery includes a negative electrode that is formed by depositing a thin film of active material on a collector by a CVD method, sputtering, evaporation, thermal spraying, or plating, wherein the thin film of the active material can lithiate and delithiate and is divided into columns by cracks formed in the thickness direction, and the bottom of each column is adhered to the collector; a positive electrode that can lithiate and delithiate; and a nonaqueous electrolyte solution containing a lithium salt in a nonaqueous solvent. The electrolyte solution contains a compound expressed by a general formula (I). (wherein, R1, R2, and R3 are hydrogen atoms or alkyl groups each optionally having a substituent, may be identical or different from one another, may be independent substituents, or may be bound together to form a ring)
摘要:
A lithium secondary battery-use electrode and a lithium secondary battery, which are high in discharge capacity and excellent in cycle characteristics, characterized in that a layer consisting of a metal alloying with Li is provided on a substrate consisting of a metal not alloying with Li, and a layer having these metals mixed therein is formed between the above layer and the substrate.
摘要:
A nonaqueous electrolyte secondary battery which has a positive electrode containing lithium cobalt oxide as a positive active material, a negative electrode containing a graphite material and a nonaqueous electrolyte solution containing ethylene carbonate as a solvent and which is charged with an end-of-charge voltage of at least 4.3 V. Characteristically, the battery uses, as the positive active material, lithium cobalt oxide obtained by firing a mixture of a lithium salt, tricobalt tetraoxide (Co3O4) and a zirconium compound and having particle surfaces onto which the zirconium compound adheres.
摘要翻译:具有含有作为正极活性物质的钴酸锂的正极的非水电解质二次电池,含有石墨材料的负极和含有碳酸亚乙酯作为溶剂的非水电解液,并充入充电电压 特别地,电池使用作为正极活性物质的锂钴氧化物,其通过焙烧锂盐,四氧化四钴(Co 3 O 4)4的混合物而获得, SUB>)和锆化合物,并且具有锆化合物附着在其上的颗粒表面。
摘要:
In a non-aqueous electrolyte battery provided with a positive electrode, a negative electrode, and a non-aqueous electrolyte using an organic solvent, at least one type of ferrite, FeS2, and a transition metal oxide (except for LiCoO2) having crystal structure of space group R3m is used as a positive electrode material for a positive electrode, and a negative electrode material containing lithium is used for a negative electrode.
摘要翻译:在使用有机溶剂的正极,负极和非水电解质的非水电解质电池中,至少一种铁氧体FeS 2 O 3和过渡金属氧化物 (具有空间群R3m的晶体结构的LiCoO 2 2除外)用作正极的正极材料,负极使用含有锂的负极材料。
摘要:
A sealed nonaqueous electrolyte secondary battery having a case which is deformed when the inner pressure is increased is characterized in that a material capable of occluding and releasing lithium is used as a negative electrode material, and a mixture of a lithium transition metal composite oxide containing Ni and Mn as transition metals and having a layered structure and a lithium cobaltate is used as a positive electrode material.
摘要:
Capacity degradation due to charge/discharge cycles is suppressed in either a non-aqueous electrolyte secondary cell provided with a positive electrode including, as a positive electrode active material, a lithium-transition metal complex oxide having a layered structure and containing at least Ni and Mn as transition metals, and a negative electrode containing a carbon material as a negative electrode active material and having a higher initial charge-discharge efficiency than that of the positive electrode, or an assembled battery having a plurality of cells each of which is the secondary cell. A control circuit incorporated in the secondary cell or the assembled battery, or in an apparatus using the secondary cell or the assembled battery, monitors the voltage of the secondary cell or each of the cells in the assembled battery so that the end-of-discharge voltage of each cell is 2.9 V or higher.
摘要:
A non aqueous electrolyte secondary battery comprises a positive electrode made from a material which is capable of occluding and discharging anions, a negative electrode made from a material which is capable of occluding and discharging cations, and a non aqueous electrolyte containing a room temperature molten salt having a melting point of not greater than 60° C.
摘要:
The nickel electrode for alkaline secondary battery according to the present invention is obtained by applying a paste containing active material particles comprising nickel hydroxide to a conductive substrate and drying the paste on the conductive substrate. In the above-mentioned nickel electrode for alkaline secondary battery, a conductive layer comprising sodium-containing cobalt oxide is formed on a surface of the active material particles and tungsten powder and/or tungsten compound powder is added on the active material particles.