Abstract:
A method of determining fatigue load of at least one operative wind turbine, comprising: providing a transfer function that associates an obtained at least one measurement value of a first sensor to an obtained at least one measurement value of a second sensor the at least one measurement value of the first sensor and the at least one measurement value of the second sensor being obtained by use of a reference wind turbine at which the first sensor and the second sensor are located; obtaining at least one measurement value of a third sensor, wherein the third sensor is located at the at least one operative wind turbine, and wherein the third sensor corresponds in type and position to the first sensor at the reference wind turbine; calculating at least one transfer function value corresponding to the obtained at least one measurement value of the third sensor by use of the provided transfer function; calculating the fatigue load of the at least one operative wind turbine based on the calculated transfer function value.
Abstract:
A method for controlling load reduction for a wind turbine rotor with rotor blades comprising an aerodynamic active element responsive to a control signal for modifying its setting is provided. The loads acting on the rotor blades in relation to the rotor's azimuth are detected and individual control signals based on a PI control system are established. Each individual control signal is a complex number containing an amplitude defining the degree of modification of the respective setting and an angle defining the phase of the modification of the respective setting with respect to the rotor's azimuth. The angle of the complex number is corrected by a phase correction factor. The elements are provided with the individual control signals. The input to the PI-control system is a complex load vector.
Abstract:
A method for controlling a wind turbine with a rotor and at least one rotor blade, and a control unit are disclosed. The method is characterized in adjusting a pitch angle of the rotor blade and determining the limit of an input value based on the adjusted pitch angle, wherein the input value includes information about the turbine rotational speed.
Abstract:
A method for acoustically monitoring a wind turbine, in particular for monitoring the existence of loose objects inside the wind turbine is provided. A sound generated in a rotating part of the wind turbine is monitored during operation of the wind turbine which sound is analyzed with respect to specific parameter values of the sound within at least one specific frequency range and if such specific parameter values are detected, a signal for possible further actions is generated. An acoustic monitoring system for a wind turbine and a re-equipment kit are also disclosed.
Abstract:
A wind turbine rotor blade is equipped with an air chamber and equipped via the air chamber to route a modulation beam out of the rotor blade such that the air current along the rotor blade is changed. Thereby the laminar current is changed into a turbulent current on the one hand and its detachment and on the other hand its recreation is achieved in order to produce the laminar current. The control may occur via electrostatic actuators via a learnable control strategy based on neural forecasts, which take the complexity of the non-linear system into account and allow for the plurality of influencing factors. The stress on the rotor blades may be reduced, resulting in longer service life and reduced maintenance costs, a higher level of efficiency or quieter operation.
Abstract:
A reflector is arranged at a first position, which is assigned to a first end of the object. An antenna-system is arranged at a second position, which is assigned to a second end of the object. The antenna system contains a transmit antenna and a receive antenna, while the reflector and the antenna-system are coupled by a radio signal. The radio signal is sent from the transmit antenna via the reflector towards the receive antenna. The receive antenna is connected with an evaluation unit, which is prepared to measure the deflection between the first end of the object and the second end of the object based on the received radio signal.
Abstract:
A method for reducing vibrations of a wind turbine includes a plurality of set points characterizing set values of operation parameters of the wind turbine. The method includes measuring an acceleration force value corresponding to acceleration forces acting on the turbine, and determining whether the measured acceleration force value is above a predetermined threshold value. Furthermore, in case it is determined that the acceleration force value is above the predetermined threshold value, the set point value of at least one set point of the plurality of set points is modified in order to reduce the vibrations in such a way that a power output of the wind turbine is not reduced.
Abstract:
In one aspect, a system for triggering an emergency system of a wind turbine is described. The system comprises a sensor for sensing an acceleration value of a portion of the rotor of the wind turbine, an estimation unit coupled to the sensor, wherein the estimation unit is adapted for receiving the acceleration value from the sensor and for estimating a rotor rotational speed value of the rotor of the wind turbine based on the acceleration value, and a triggering unit coupled to the estimation unit, wherein the triggering unit is adapted for receiving the rotor rotational speed value and for triggering the emergency system, when the rotor rotational speed value exceeds a predefined limit value. Further described are a method for triggering an emergency system of a wind turbine, a wind turbine, a computer program and a computer-readable medium, which are all adapted for carrying out the triggering method.
Abstract:
Disclosed is a method of reducing a structural unbalance in a wind turbine rotor with pitch control and a control device for performing the method are provided. The method comprises the steps of: detecting a magnitude of the structural unbalance and its phase in relation the rotor's azimuth (θ) on the basis of a measurement of the rotor's azimuth (θ) and a measurement of the rotor speed or the generator speed (ω), establishing individual pitch angle offsets for each blade of the rotor on the basis of the magnitude and the phase, and adding the individual pitch angle offsets to the respective pitch angles of the blades of the rotor.
Abstract:
A reflector is arranged at a first position, which is assigned to a first end of the object. An antenna-system is arranged at a second position, which is assigned to a second end of the object. The antenna system contains a transmit antenna and a receive antenna, while the reflector and the antenna-system are coupled by a radio signal. The radio signal is sent from the transmit antenna via the reflector towards the receive antenna. The receive antenna is connected with an evaluation unit, which is prepared to measure the deflection between the first end of the object and the second end of the object based on the received radio signal.