摘要:
A method for controlling a wind turbine with a rotor and at least one rotor blade, and a control unit are disclosed. The method is characterised in adjusting a pitch angle of the rotor blade and determining the limit of an input value based on the adjusted pitch angle, wherein the input value includes information about the turbine rotational speed.
摘要:
A method for controlling a wind turbine with a rotor and at least one rotor blade, and a control unit are disclosed. The method is characterized in adjusting a pitch angle of the rotor blade and determining the limit of an input value based on the adjusted pitch angle, wherein the input value includes information about the turbine rotational speed.
摘要:
A method of controlling the load of a wind turbine is provided. A rate of wear experienced by the wind turbine as a result of the current operating conditions of the wind turbine is determined. A control vector for controlling the wind turbine is determined based on the determined rate of wear. The load of the wind turbine is controlled in accordance with the determined control vector. Determining the control vector includes weighting the determined rate of wear by a cost of electricity value and determining the control vector based on the weighted rate of wear.
摘要:
A method for determining a total mechanical load of a wind turbine is provided. A present load signal indicative of a present load of a wind turbine base structure is obtained, wherein the present load acts in a present angular direction. A first present load and a second present load are derived based upon the present load signal and the present angular direction, wherein the first present load is associated with a first angular sector of the turbine and the second present load is associated with a second angular sector of the turbine. Further, a total mechanical load is derived based upon the first present load and the second present load.
摘要:
An arrangement for generating a control signal for controlling a power output of a power generation system is described. The power output is to be supplied to a utility grid, the arrangement includes an input terminal for receiving an input signal indicative of an actual grid frequency of the utility grid; a control circuit for generating the control signal wherein the control circuit comprises a first circuit for generating a time derivative value of the input signal; and an output terminal to which the control signal is supplied, wherein the control signal depends on the generated time derivative value of the input signal. Further a power generation system is described.
摘要:
A method for determining a mass change at a rotating blade of a wind turbine is provided. The method includes measuring a vibration quantity representative of a vibration of the wind turbine, measuring an azimuthal quantity representative of a rotation angle of the blade, determining a frequency quantity representative of a vibration frequency of the blade from the vibration quantity and the azimuthal quantity, and determining the mass change at the blade based on the frequency quantity.
摘要:
A method for determining a mass change at a rotating blade of a wind turbine is provided. The method includes measuring a vibration quantity representative of a vibration of the wind turbine, measuring an azimuthal quantity representative of a rotation angle of the blade, determining a frequency quantity representative of a vibration frequency of the blade from the vibration quantity and the azimuthal quantity, and determining the mass change at the blade based on the frequency quantity.
摘要:
A method for controlling the operation of a wind farm with a plurality of wind turbines is disclosed A setpoint vector is defined, wherein each component of the setpoint vector represents an individual power setpoint of one of the plurality of wind turbines. A dependency matrix, which reflects a desired power generation distribution between different wind turbines of the plurality of wind turbines, is determined. A power reference vector is calculated by multiplying the dependency matrix with the setpoint vector, such that the power reference vector comprises a coordinated power setpoint for each wind turbine. The operation of the wind farm is controlled based on the calculated power reference vector. A superordinate control system, a wind farm, a computer-readable medium and a program element, which are adapted for performing and/or for controlling the above described wind farm operation control method are further disclosed.
摘要:
A method for controlling the operation of a wind farm with a plurality of wind turbines is disclosed A setpoint vector is defined, wherein each component of the setpoint vector represents an individual power setpoint of one of the plurality of wind turbines. A dependency matrix, which reflects a desired power generation distribution between different wind turbines of the plurality of wind turbines, is determined. A power reference vector is calculated by multiplying the dependency matrix with the setpoint vector, such that the power reference vector comprises a coordinated power setpoint for each wind turbine. The operation of the wind farm is controlled based on the calculated power reference vector. A superordinate control system, a wind farm, a computer-readable medium and a program element, which are adapted for performing and/or for controlling the above described wind farm operation control method are further disclosed.
摘要:
An arrangement to measure deflection of a blade of a wind turbine is provided. A transmitter is arranged close to the tip end of the blade, while a receiver is arranged close to the root end of the blade. The transmitter and receiver are prepared for a wireless transfer of a monitoring signal, which is sent from the transmitter to the receiver. A monitoring system is arranged close to the root end of the blade. The monitoring system is adapted to generate the monitoring signal. The monitoring system is connected with the transmitter by a cable-bound communication line, thus the monitoring signal is transferred from the monitoring system to the transmitter. The monitoring system is connected with the receiver, thus the monitoring signal is transferred from the receiver to the monitoring system. The monitoring system is adapted to determine the deflection of the blade based on the transferred monitoring signal.