摘要:
Provided is a method for manufacturing an SOI wafer, which is capable of: efficiently removing an ion-implanted defect layer existing in an ion implanted layer in the vicinity of a peeled surface peeled by an ion implantation peeling method; ensuring the in-plane uniformity of a substrate; and also achieving cost reduction and higher throughput. The method for manufacturing an SOI wafer includes at least the steps of: bonding a silicon wafer with or without an oxide film onto a handle wafer to prepare a bonded substrate, wherein the silicon wafer has an ion implanted layer formed by implanting hydrogen ions and/or rare gas ions into the silicon wafer; peeling the silicon wafer along the ion implanted layer, thereby transferring the silicon wafer onto the handle wafer to produce a post-peeling SOI wafer; immersing the post-peeling SOI wafer in an aqueous ammonia-hydrogen peroxide solution; and performing a heat treatment at a temperature of 900° C. or higher on the immersed post-peeling SOI wafer, and/or polishing a silicon film layer of the immersed post-peeling SOI wafer, through CMP polishing by 10 to 50 nm.
摘要:
Provided is a method for producing an SOI substrate comprising a transparent insulating substrate and a silicon film formed on a first major surface of the insulating substrate wherein a second major surface of the insulating substrate which is opposite to the major surface is roughened, the method suppressing the generation of metal impurities and particles in a simple and easy way. More specifically, provided is a method for producing an SOI substrate comprising a transparent insulating substrate, a silicon film formed on a first major surface of the transparent insulating substrate, and a roughened second major surface, which is opposite to the first major surface, the method comprising steps of: providing the transparent insulating substrate, mirror surface-processing at least the first major surface of the transparent insulating substrate, forming a silicon film on the first major surface of the transparent insulating substrate, and laser-processing the second major surface of the transparent insulating substrate so as to roughen the second major surface by using a laser.
摘要:
A method of making bonded SOS substrate with a semiconductor film on or above a sapphire substrate by implanting ions from a surface of the semiconductor substrate to form an ion-implanted layer; activating at least a surface of one of the sapphire substrate and the semiconductor substrate from which the ions have been implanted; bonding the surface of the semiconductor substrate and the surface of the sapphire substrate at a temperature of from 50° C. to 350° C.; heating the bonded substrates at a maximum temperature of from 200° C. to 350° C.; and irradiating visible light from a sapphire substrate side or a semiconductor substrate side to the ion-implanted layer of the semiconductor substrate to make the interface of the ion-implanted layer brittle at a temperature of the bonded body higher than the temperature at which the surfaces were bonded, to transfer the semiconductor film to the sapphire substrate.
摘要:
A bonded SOS substrate having a semiconductor film on or above a surface of a sapphire substrate is obtained by a method with the steps of implanting ions from a surface of a semiconductor substrate to form an ion-implanted layer; activating at least a surface from which the ions have been implanted; bonding the surface of the semiconductor substrate and the surface of the sapphire substrate at a temperature of 50° C. to 350° C.; heating the bonded substrates at a maximum temperature from 200° C. to 350° C. to form a bonded body; and irradiating visible light from a sapphire substrate side or a semiconductor substrate side to the ion-implanted layer of the semiconductor substrate for embrittling an interface of the ion-implanted layer, while keeping the bonded body at a temperature higher than the temperature at which the surfaces of the semiconductor substrate and the sapphire substrate were bonded.
摘要:
Provided is a method for easily preparing a substrate comprising a monocrystalline film thereon or thereabove with almost no crystal defects without using a special substrate. More specifically, provided is a method for preparing a substrate comprising a monocrystalline film formed on or above a handle substrate, the method comprising: a step A of providing a donor substrate and the handle substrate; a step B of growing a monocrystalline layer on the donor substrate; a step C of implanting ions into the monocrystalline layer on the donor substrate so as to form an ion-implanted layer; a step D of bonding a surface of the monocrystalline layer of the ion-implanted donor substrate to a surface of the handle substrate; and a step E of peeling the bonded donor substrate at the ion-implanted layer existing in the monocrystalline layer so as to form the monocrystalline film on or above the handle substrate; wherein at least the steps A to E are repeated by using the handle substrate having the monocrystalline film formed thereon or thereabove as a donor substrate.
摘要:
Provided is a method for easily preparing a substrate comprising a monocrystalline film thereon or thereabove with almost no crystal defects without using a special substrate. More specifically, provided is a method for preparing a substrate comprising a monocrystalline film formed on or above a handle substrate, the method comprising: a step A of providing a donor substrate and the handle substrate; a step B of growing a monocrystalline layer on the donor substrate; a step C of implanting ions into the monocrystalline layer on the donor substrate so as to form an ion-implanted layer; a step D of bonding a surface of the monocrystalline layer of the ion-implanted donor substrate to a surface of the handle substrate; and a step E of peeling the bonded donor substrate at the ion-implanted layer existing in the monocrystalline layer so as to form the monocrystalline film on or above the handle substrate; wherein at least the steps A to E are repeated by using the handle substrate having the monocrystalline film formed thereon or thereabove as a donor substrate.
摘要:
When a thermal expansion coefficient of a handle substrate is higher than that of a donor substrate, delamination is provided without causing a crack in the substrates. A method for producing a bonded wafer, with at least the steps of: implanting ions into a donor substrate (3) from a surface thereof to form an ion-implanted interface (5); bonding a handle substrate (7) with a thermal expansion coefficient higher than that of the donor substrate (3) onto the ion-implanted surface of the donor substrate to provide bonded substrates, subjecting the bonded substrates to a heat treatment to provide an assembly (1), and delaminating the donor substrate (3) of the assembly (1) at the ion-implanted interface wherein the assembly (1) has been cooled to a temperature not greater than room temperature by a cooling apparatus (20), so that a donor film is transferred onto the handle substrate (7).
摘要:
When a thermal expansion coefficient of a handle substrate is higher than that of a donor substrate, delamination is provided without causing a crack in the substrates. A method for producing a bonded wafer, with at least the steps of: implanting ions into a donor substrate (3) from a surface thereof to form an ion-implanted interface (5); bonding a handle substrate (7) with a thermal expansion coefficient higher than that of the donor substrate (3) onto the ion-implanted surface of the donor substrate to provide bonded substrates, subjecting the bonded substrates to a heat treatment to provide an assembly (1), and delaminating the donor substrate (3) of the assembly (1) at the ion-implanted interface wherein the assembly (1) has been cooled to a temperature not greater than room temperature by a cooling apparatus (20), so that a donor film is transferred onto the handle substrate (7).
摘要:
Proposed is a ceramic-made electrostatic chuck consisting of two insulating ceramic layers and a metallic electrode layer integrally sandwiched between the two insulating layers, which has a very quick response characteristic to turning-on and -off of the electric voltage applied to the electrodes without affecting the very high electrostatic attracting force. This improvement can be obtained by forming the insulating ceramic layers from a specific ceramic material consisting of a highly resistive ceramic material such as alumina and the like and titanium nitride admixed with the former in an amount not exceeding 5% by weight but sufficient to impart the insulating ceramic layers with a volume resistivity in the range from 1.times.10.sup.8 to 1.times.10.sup.13 ohm.cm at 20.degree. C.
摘要:
There is disclosed a silicon electrode plate including silicon single crystal used as an upper electrode in a plasma etching apparatus wherein concentration of interstitial oxygen contained in the silicon electrode plate is not less than 5×1017 atoms/cm3 and not more than 1.5×1018 atoms/cm3, and the silicon electrode plate wherein nitrogen concentration in the silicon electrode plate is not less than 5×1013 atoms/cm3 and not more than 5×1015 atoms/cm3. There can be provided a silicon electrode plate consisting of silicon single crystal used as an upper electrode in a plasma etching apparatus wherein problems due to adhesion of impurities such as heavy metal or the like can be prevented.
摘要翻译:公开了一种在等离子体蚀刻装置中用作上电极的硅单晶的硅电极板,其中硅电极板中所含的间隙氧的浓度不小于5×10 17原子/ cm 3且不大于1.5×10 18原子/ cm 3, 硅电极板中的氮浓度不小于5×10 13原子/ cm 3且不大于5×10 15原子/ cm 3的硅电极板。 在等离子体蚀刻装置中可以提供由用作上电极的硅单晶组成的硅电极板,其中可以防止由于诸如重金属等的杂质的附着而引起的问题。