摘要:
Provided is a method for manufacturing a bonded wafer with a good thin film over the entire substrate surface, especially in the vicinity of the lamination terminal point. The method for manufacturing a bonded wafer comprises at least the following steps of: forming an ion-implanted region by implanting a hydrogen ion or a rare gas ion, or the both types of ions from a surface of a first substrate which is a semiconductor substrate; subjecting at least one of an ion-implanted surface of the first substrate and a surface of a second substrate to be attached to a surface activation treatment; laminating the ion-implanted surface of the first substrate and the surface of the second substrate in an atmosphere with a humidity of 30% or less and/or a moisture content of 6 g/m3 or less; and a splitting the first substrate at the ion-implanted region so as to reduce thickness of the first substrate, thereby manufacturing a bonded wafer with a thin film on the second substrate.
摘要翻译:提供一种在整个基板表面上,特别是在层叠终点附近制造具有良好薄膜的接合晶片的方法。 制造接合晶片的方法至少包括以下步骤:通过从作为半导体衬底的第一衬底的表面注入氢离子或稀有气体离子或两种离子形成离子注入区域 ; 对第一基板的离子注入表面和第二基板的表面中的至少一个进行表面活化处理; 将第一基板的离子注入表面和第二基板的表面在湿度为30%以下和/或6g / m 3以下的气氛中层压; 以及在离子注入区域处分裂第一衬底以便减小第一衬底的厚度,由此在第二衬底上制造具有薄膜的接合晶片。
摘要:
To provide a method of manufacturing a laminated wafer by which a strong coupling is achieved between wafers made of different materials having a large difference in thermal expansion coefficient without lowering a maximum heat treatment temperature as well as in which cracks or chips of the wafer does not occur. A method of manufacturing a laminated wafer 7 by forming a silicon film layer on a surface 4 of an insulating substrate 3 comprising the steps in the following order of: applying a surface activation treatment to both a surface 2 of a silicon wafer 1 or a silicon wafer 1 to which an oxide film is layered and a surface 4 of the insulating substrate 3 followed by laminating in an atmosphere of temperature exceeding 50° C. and lower than 300° C., applying a heat treatment to a laminated wafer 5 at a temperature of 200° C. to 350° C., and thinning the silicon wafer 1 by a combination of grinding, etching and polishing to form a silicon film layer.
摘要:
A bonded SOS substrate having a semiconductor film on or above a surface of a sapphire substrate is obtained by a method with the steps of implanting ions from a surface of a semiconductor substrate to form an ion-implanted layer; activating at least a surface from which the ions have been implanted; bonding the surface of the semiconductor substrate and the surface of the sapphire substrate at a temperature of 50° C. to 350° C.; heating the bonded substrates at a maximum temperature from 200° C. to 350° C. to form a bonded body; and irradiating visible light from a sapphire substrate side or a semiconductor substrate side to the ion-implanted layer of the semiconductor substrate for embrittling an interface of the ion-implanted layer, while keeping the bonded body at a temperature higher than the temperature at which the surfaces of the semiconductor substrate and the sapphire substrate were bonded.
摘要:
A method of making bonded SOS substrate with a semiconductor film on or above a sapphire substrate by implanting ions from a surface of the semiconductor substrate to form an ion-implanted layer; activating at least a surface of one of the sapphire substrate and the semiconductor substrate from which the ions have been implanted; bonding the surface of the semiconductor substrate and the surface of the sapphire substrate at a temperature of from 50° C. to 350° C.; heating the bonded substrates at a maximum temperature of from 200° C. to 350° C.; and irradiating visible light from a sapphire substrate side or a semiconductor substrate side to the ion-implanted layer of the semiconductor substrate to make the interface of the ion-implanted layer brittle at a temperature of the bonded body higher than the temperature at which the surfaces were bonded, to transfer the semiconductor film to the sapphire substrate.
摘要:
There is provided a method for manufacturing an SOI substrate capable of effectively and efficiently embrittling an interface of an ion-implanted layer without causing the separation of a bonded surface 9 or the breakage of a bonded wafer.Provided is a method for manufacturing an SOI substrate 8 by forming an SOI layer 4 on a surface of a transparent insulating substrate 3, the method comprising, in the following order, implanting ions into a silicon wafer 5 or a silicon wafer 5 with an oxide film 7 from a surface thereof so as to form an ion-implanted layer 2; subjecting at least one of the surface of the transparent insulating substrate and the surface of the ion-implanted silicon wafer or the silicon wafer with an oxide film to a surface activation treatment; bonding together the silicon wafer 5 or the silicon wafer 5 with an oxide film 7 and the transparent insulating substrate 3; subjecting the bonded wafer to a heat treatment at 150° C. or higher but not higher than 350° C. so as to obtain a laminate 6; and irradiating visible light at a side of the transparent insulating substrate 3 of the laminate 6 toward the ion-implanted layer 2 of the silicon wafer 5 or the silicon wafer 5 with an oxide film 7 to embrittle an interface of the ion-implanted layer 2 and transfer a silicon thin film to the transparent insulating substrate 3 so that the SOI layer 4 can be formed.
摘要:
There is provided a method for manufacturing an SOI substrate capable of effectively and efficiently embrittling an interface of an ion-implanted layer without causing the separation of a bonded surface 9 or the breakage of a bonded wafer.Provided is a method for manufacturing an SOI substrate 8 by forming an SOI layer 4 on a surface of a transparent insulating substrate 3, the method comprising, in the following order, implanting ions into a silicon wafer 5 or a silicon wafer 5 with an oxide film 7 from a surface thereof so as to form an ion-implanted layer 2; subjecting at least one of the surface of the transparent insulating substrate and the surface of the ion-implanted silicon wafer or the silicon wafer with an oxide film to a surface activation treatment; bonding together the silicon wafer 5 or the silicon wafer 5 with an oxide film 7 and the transparent insulating substrate 3; subjecting the bonded wafer to a heat treatment at 150° C. or higher but not higher than 350° C. so as to obtain a laminate 6; and irradiating visible light at a side of the transparent insulating substrate 3 of the laminate 6 toward the ion-implanted layer 2 of the silicon wafer 5 or the silicon wafer 5 with an oxide film 7 to embrittle an interface of the ion-implanted layer 2 and transfer a silicon thin film to the transparent insulating substrate 3 so that the SOI layer 4 can be formed.
摘要:
In a manufacturing method of manufacturing a silicon on insulator (SOI) wafer, a single crystal silicon whose surface is an N region on an outer side of an OSF region, is grown and sliced to fabricate an N region single crystal silicon. An ion injection layer is formed within the N region single crystal silicon wafer by injecting a hydrogen ion or a rare gas ion from a surface of the N region single crystal silicon wafer; the ion injection surface of the N region single crystal silicon wafer and/or a surface of the transparent insulation substrate is processed using plasma and/or ozone. The ion injection surface is bonded to the surface of the transparent insulation substrate by bringing them into close contact with each other at room temperature. An SOI layer is formed by mechanically peeling the single crystal silicon wafer.
摘要:
Ion injection is performed to a single crystal silicon wafer to form an ion injection layer, with the ion injection surface of the single crystal silicon wafer and/or the surface of the transparent insulation substrate are/is processed using plasma and/or ozone. The ion injection surface of the single crystal silicon wafer and the surface of the transparent insulation substrate are bonded to each other by bringing them into close contact with each other at room temperature. A silicon on insulator (SOI) wafer is obtained by mechanically peeling the single crystal silicon wafer by giving an impact to the ion injection layer, to form an SOI layer on the transparent insulation substrate, and thermal processing for flattening the SOI layer surface is performed to the SOI wafer, under an atmosphere of an inert gas, a hydrogen gas, and a mixture gas of them.
摘要:
In a manufacturing method for manufacturing a silicon on insulator (SOI) wafer, an ion injection layer is formed within the wafer, by injecting a hydrogen ion or a rare gas ion from a surface of the single crystal silicon wafer, the ion injection surface of the single crystal silicon wafer and/or a surface of the transparent insulation substrate is processed using plasma and/or ozone, the ion injection surface of the single crystal silicon wafer is bonded to the surface of the transparent insulation substrate, by bringing them into close contact with each other at room temperature, with the processed surface(s) as bonding surface(s), and an SOI layer is formed on the transparent insulation substrate, by mechanically peeling the single crystal silicon wafer by giving an impact to the ion injection layer.
摘要:
The present invention relates to a solar cell module which is characterized in that: a light-transmitting elastomer member and a solar cell element are arranged in a space between a panel of a transparent member upon which sunlight is incident and a panel of a thermally conductive member which is arranged on the side opposite to the sunlight incidence side in such a manner that the light-transmitting elastomer member is closer to the sunlight incidence side; and the solar cell element is pressed by the light-transmitting elastomer member toward the panel of a thermally conductive member so that the solar cell element is compression bonded thereto. This solar cell module is most suitable as a solar cell module that has excellent heat dissipation of a cell, the temperature of which is increased due to sunlight or a hot spot, and a structure that suppresses the production cost.