Spin current magnetization reversal element, magnetoresistance effect element, and magnetic memory

    公开(公告)号:US10546995B2

    公开(公告)日:2020-01-28

    申请号:US15778115

    申请日:2016-11-25

    Abstract: A spin current magnetization reversal element includes: a first ferromagnetic metal layer with a changeable magnetization direction, and a spin-orbit torque wiring, wherein a first direction is defined as a direction perpendicular to a surface of the first ferromagnetic metal layer, the wiring extends in a second direction intersecting the first and is bonded to a first surface of the first ferromagnetic metal layer, wherein the wiring includes a pure spin current generator which is bonded to the metal layer, and a low-resistance portion which is connected to both ends of the generator in the second direction and is formed of a material having a smaller electrical resistivity than the generator, and the generator is formed so that an area of a cross-section orthogonal to the first direction continuously and/or stepwisely increases as it recedes from a bonding surface bonded to the first ferromagnetic metal layer in the first direction.

    Spin-orbit torque type magnetoresistance effect element, and method for producing spin-orbit torque type magnetoresistance effect element

    公开(公告)号:US10439130B2

    公开(公告)日:2019-10-08

    申请号:US15702290

    申请日:2017-09-12

    Abstract: A spin-orbit torque type magnetoresistance effect element including a magnetoresistance effect element having a first ferromagnetic metal layer with a fixed magnetization direction, a second ferromagnetic metal layer with a varying magnetization direction, and a non-magnetic layer sandwiched between the first ferromagnetic metal layer and the second ferromagnetic metal layer; and spin-orbit torque wiring that extends in a first direction intersecting with a stacking direction of the magnetoresistance effect element and that is joined to the second ferromagnetic metal layer; wherein the magnetization of the second ferromagnetic metal layer is oriented in the stacking direction of the magnetoresistance effect element; and the second ferromagnetic metal layer has shape anisotropy, such that a length along the first direction is greater than a length along a second direction orthogonal to the first direction and to the stacking direction.

Patent Agency Ranking