Abstract:
A plasma display panel (PDP) designed to reduce the amount of external light that is reflected. This is accomplished by having some phosphor material on portions of the tops of the barrier ribs outside the discharge cells. Since the reflectance of the barrier rib material is higher than that of phosphor material, such a design will reduce the amount of external light reflected off the screen of a plasma display panel. By reducing external light reflection, the contrast of the image is improved. This can be achieved while still preventing crosstalk between neighboring discharge cells.
Abstract:
A plasma display device prevents interconnect wiring from breaking due to thermal deformation, and is thus suitable for high definition. The plasma display device includes a chassis base, a plasma display panel disposed in front of the chassis base to display an image, a circuit board disposed in back of the chassis base for driving the plasma display panel, and interconnect wiring connecting the circuit board to the plasma display panel. The plasma display device has a structure in which a ratio of a distance between an end of the circuit board and a curve apex of the interconnect wiring to a distance between a front end and a back end of the interconnect wiring is at least 0.25. As a result, the interconnect wiring is prevented from breaking due to thermal expansion of the plasma display panel and the chassis base.
Abstract:
A plasma display panel includes a front glass substrate and a rear glass substrate coupled to each other by a sealing material coated at edges of the front and rear glass substrates, first and second electrodes disposed perpendicular to each other on opposing inner surfaces of the front and rear glass substrates facing each other, a dielectric layer formed on each of the opposing inner surfaces,of the front and rear glass substrates to cover the first and second electrodes, partitions formed on an upper surface of the dielectric layer of the rear glass substrate, red, green and blue fluorescent substances coated between the partitions, and a non-light emitting zone filling portion formed by filling a non-light emitting zone existing between the outermost one of the partitions and the sealing material with a material used for one of the partitions.
Abstract:
A plasma display panel having a light absorption reflection film that does not reflect light emitted from a discharge space in a non-discharge region includes: a rear substrate; a plurality of address electrodes arranged on a surface of the rear substrate; a rear dielectric layer arranged on the rear substrate to cover the address electrodes; a plurality of barrier ribs arranged on the rear dielectric layer to define discharge cells; a front substrate facing the rear substrate; a plurality of sustaining electrode pairs composed of X and Y electrodes; a light absorption reflection film including a first light absorption reflection film arranged between the adjacent sustaining electrode pairs and a second light absorption reflection film having a different width than that of the first light absorption reflection film, the second light absorption reflection film arranged on a lower surface of the first light absorption reflection film; and a front dielectric layer arranged on a lower surface of the front substrate to cover the X and Y electrodes and the light absorption reflection film.
Abstract:
A Plasma Display Panel (PDP) includes: a front panel having a front plate and a plurality of electrodes arranged on a surface of the front plate in a predetermined pattern and a back panel having a back plate facing the front plate, a plurality of electrodes arranged on a surface of the back plate in a predetermined pattern to correspond to the plurality of electrodes of the front plate, and at least one ventilation hole. At least two back plates are formed by cutting one base plate on which at least two ventilation holes are formed. Each ventilation hole has a first width in a first edge direction of the back plate and a distance from the first edge to a center of the at least one ventilation hole is at least twice that of the first width.
Abstract:
A display apparatus includes a display panel and a heat transfer sheet mounted adjacent to one surface of the display panel. A plurality of pores are formed in the heat transfer sheet. The heat transfer sheet may have an open cell-type structure and/or a closed cell-type structure. The open cell-type structure includes pores that are interconnected. The closed cell-type structure includes pores formed that are not in communication with each other, rather these pores may be independently formed.
Abstract:
A plasma display apparatus includes a heat radiation sheet that is easily attached and separated to and from a plasma display panel, has strengthened adherence with the plasma display panel and a chassis base, and does not generate a residual image. The plasma display apparatus includes a heat radiation sheet between a plasma display panel and a chassis base, and the heat radiation sheet is divided into two or more sheets, where the gap between the sheets is small enough so that a visible residual image does not appear.
Abstract:
Provided are designs for a plasma display module (PDM) that has a plasma display panel (PDP) and a chassis base with circuits mounted thereon. Heat dissipating layers and plane structures are formed between the PDP and the chassis base. The heat dissipating layer and the plane structure have novel shapes and sizes and are made out of specific materials or combinations of materials to improve the heat dissipating characteristics for the PDM. Preferably, a high-orientation graphite material having a high thermal conductivity is used for the heat dissipating layer. The plane structure is a highly conductive metal that is positioned between the graphite layer and the glass PDP to form a better contact to the PDP, to better draw heat away from the PDP and to allow for easy attachment and detachment of the graphite layer to the PDP.
Abstract:
A plasma display according to an exemplary embodiment of the present invention applies different driving methods according to a maximum grayscale level of image data input for one field. When the maximum grayscale level of the field is higher than a reference level, an address period for selecting a light emitting cell and a non-light emitting cell from a plurality of discharge cells and a sustain period for sustain-discharging light emitting cells among the plurality of discharge cells are simultaneously driven in a plurality of sequential subfields after a first subfield. When the maximum grayscale level of the field is less than the reference level, the address period and the sustain period are time-separately driven in the plurality of subfields.
Abstract:
A plasma display device includes a plasma display panel for displaying an image by a gas discharge. A chassis base is attached to the plasma display panel and supports the plasma display panel. At least one printed circuit board is mounted on the a side of the chassis base at opposite the side supporting the plasma display panel. At least one flexible printed circuit connects electrodes of the plasma display panel and terminals of the printed circuit boards. An anisotropic conductive film is between the terminal of the printed circuit board and a terminal of the flexible printed circuit and connects the terminal of the printed circuit board and the terminal of the flexible printed circuit. The printed circuit board includes at least one dummy groove outside a region of the printed circuit board facing the flexible printed circuit.