Abstract:
In at least some embodiments, a communication device includes a transceiver with a physical (PHY) layer. The PHY layer is configured for body area network (BAN) operations in a limited multipath environment using M-ary PSK, differential M-ary PSK or rotated differential M-ary PSK. Also, the PHY layer uses a constant symbol rate for BAN packet transmissions.
Abstract:
An orthogonal frequency division multiplexing (OFDM) receiver includes detection logic, offset generation logic, tone erasure logic, and correction generation logic. The detection logic is configured to detect a signal containing a block of samples that includes a narrowband interferer from a communication channel. The offset generation logic is configured to align a frequency of the narrowband interferer to a center of a subcarrier frequency of the communication channel to produce an offset signal thereby introducing inter-carrier interference (ICI). The tone erasure logic is configured to remove the subcarrier frequency from the offset signal to produce an interferer erased offset signal. The correction generation logic is configured to remove the ICI to produce an interferer erased signal.
Abstract:
A method of encoding a first bit and a second bit for transmission on a transmission band is provided. The method includes: mapping, via a mapping component, the first bit and the second bit into a first symbol; mapping, via the mapping component, the first bit and the second bit into a second symbol; dividing, via a dividing component, the transmission band into subcarriers; allocating, via an allocating component, the first symbol to a first subcarrier of the subcarriers; allocating, via the allocating component, the second symbol to a second subcarrier of the subcarriers; and differentially encoding, via a differential encoder, the first symbol and the second symbol.
Abstract:
In at least some embodiments, a communication device includes a transceiver with a physical (PHY) layer. The PHY layer is configured for body area network (BAN) operations in a limited multipath environment based on a constant symbol rate for BAN packet transmissions and based on M-ary PSK, differential M-ary PSK or rotated differential M-ary PSK modulation. The PHY layer is configured to transmit and receive data in a frequency band selected from the group consisting of: 402-405 MHz, 420-450 MHz, 863-870 MHz, 902-928 MHz, 950-956 MHz, 2360-2400 MHz, and 2400-2483.5 MHz.
Abstract:
A PLC network system and method operative with OFDM for generating MIMO frames with suitable preamble portions configured to provide backward compatibility with legacy PLC devices and facilitate different receiver tasks such as frame detection and symbol timing, channel estimation and automatic gain control (AGC), including robust preamble detection in the presence of impulsive noise and frequency-selective channels of the PLC network. A PLC device may include a delayed correlation detector and a cross-correlation detector operating in concert to facilitate preamble detection in one implementation.
Abstract:
A method of encoding a set of L bits for transmission on a transmission band through a transmission medium is provided, wherein L is a positive integer that is greater than 1. The method includes: mapping, via a mapping component, the L bits into M symbols; dividing, via a first dividing component, the transmission band into sub-bands; allocating, via an allocating component, the M symbols to individual sub-bands, respectively, for transmission at a first time; and allocating, via the allocating component, the M symbols to different individual sub-bands, respectively, for transmission at a second time.
Abstract:
A smart utility network (SUN) device that includes an orthogonal frequency-division multiplexing (OFDM)-based transmitter. The OFDM-based transmitter including a signal processor to convert data from a frequency-domain to a time-domain using an inverse fast Fourier transform (IFFT) and configured to perform a time-domain windowing function based on a Hanning window on OFDM symbols.
Abstract:
A device coupled to a noisy channel having periodic impulse noise in a network may estimate an effective signal to noise ratio (SNR) by receiving a packet of symbols. The device may determined a number of bad symbols N(bad) ratio in the packet due to interference and a remaining plurality of good symbols in the packet. An SNR value may be computed based on only the plurality of good symbols in the packet of symbols to form an SNR(good) value. An SNR correction value (SNR(offset)) may be determined as a function of the N(bad) ratio and the SNR(good) value. An effective SNR value may then be calculated by adjusting the SNR(good) value according to SNR(offset).
Abstract:
A band of interest is divided into band segments. A scan frame is sent by a transmitter at a transmitting PLC node across each band segment. A receiver at a receiving node scans the band segments, listening for the scan frame. Upon detecting a scan frame, the receiving node measures the signal quality of each OFDM subcarrier modulated with symbols from the scan frame. The subcarrier signal quality values are stored in a table. Upon completion of the scan process, the table contains a signal quality value for each subcarrier within the band of interest. The table is then analyzed to find an operating band consisting of subcarriers with a highest average signal quality or a band that results in greater than a pre-determined minimum signal quality. The invented methods and embodiments may operate periodically to readjust the operating band configuration in the presence of electromagnetic interference including time-variant interference.
Abstract:
A PLC network system and method operative with OFDM for generating MIMO frames with suitable preamble portions configured to provide backward compatibility with legacy PLC devices and facilitate different receiver tasks such as frame detection and symbol timing, channel estimation and automatic gain control (AGC), including robust preamble detection in the presence of impulsive noise and frequency-selective channels of the PLC network. To reduce collisions in a network, a MIMO PLC transmitter device may selectively perturb legacy FCH data so as to ensure a maximum back-off time by a legacy PLC receiver.