Test device and method for measurement of tunneling magnetoresistance properties of a manufacturable wafer by the current-in-plane-tunneling technique
    71.
    发明授权
    Test device and method for measurement of tunneling magnetoresistance properties of a manufacturable wafer by the current-in-plane-tunneling technique 有权
    用于通过平面内隧道技术测量可制造晶片的隧道磁阻特性的测试装置和方法

    公开(公告)号:US07863911B2

    公开(公告)日:2011-01-04

    申请号:US12006322

    申请日:2007-12-31

    IPC分类号: G01R27/08 G01R31/08 G01R31/02

    摘要: A combined manufacturable wafer and test device for measuring a tunneling-magnetoresistance property of a tunneling-magnetoresistance, sensor-layer structure. The combined manufacturable wafer and test device comprises a tunneling-magnetoresistance, sensor-layer structure disposed on a substrate. The combined manufacturable wafer and test device also comprises a plurality of partially fabricated tunneling-magnetoresistance sensors; at least one of the partially fabricated tunneling-magnetoresistance sensors is disposed at one of a plurality of first locations. The test device is disposed on the substrate at a second location different from the plurality of first locations. The test device allows measurement of the tunneling-magnetoresistance property of the tunneling-magnetoresistance, sensor-layer structure using a current-in-plane-tunneling technique.

    摘要翻译: 用于测量隧道 - 磁阻,传感器层结构的隧道 - 磁阻特性的组合制造晶片和测试装置。 组合的可制造晶片和测试装置包括设置在基板上的隧道 - 磁阻,传感器层结构。 组合的可制造晶片和测试装置还包括多个部分制造的隧道 - 磁阻传感器; 部分制造的隧道 - 磁阻传感器中的至少一个设置在多个第一位置中的一个位置。 测试装置在不同于多个第一位置的第二位置处设置在基板上。 测试装置允许使用平面内隧道技术测量隧道 - 磁阻,传感器层结构的隧道 - 磁阻特性。

    ENHANCED ANTI-PARALLEL-PINNED SENSOR USING THIN RUTHENIUM SPACER AND HIGH MAGNETIC FIELD ANNEALING
    73.
    发明申请
    ENHANCED ANTI-PARALLEL-PINNED SENSOR USING THIN RUTHENIUM SPACER AND HIGH MAGNETIC FIELD ANNEALING 有权
    使用薄型间隔器和高磁场退火的增强型抗并联型传感器

    公开(公告)号:US20080285182A1

    公开(公告)日:2008-11-20

    申请号:US12172134

    申请日:2008-07-11

    IPC分类号: G11B5/127

    摘要: An anti-parallel pinned sensor is provided with a spacer that increases the anti-parallel coupling strength of the sensor. The anti-parallel pinned sensor is a GMR or TMR sensor having a pure ruthenium or ruthenium alloy spacer. The thickness of the spacer is less than 0.8 nm, preferably between 0.1 and 0.6 nm. The spacer is also annealed in a magnetic field that is 1.5 Tesla or higher, and preferably greater than 5 Tesla. This design yields unexpected results by more than tripling the pinning field over that of typical AP-pinned GMR and TMR sensors that utilize ruthenium spacers which are 0.8 nm thick and annealed in a relatively low magnetic field of approximately 1.3 Tesla.

    摘要翻译: 反平行销钉式传感器设置有增加传感器的反平行耦合强度的间隔件。 反平行钉扎传感器是具有纯钌或钌合金间隔物的GMR或TMR传感器。 间隔物的厚度小于0.8nm,优选在0.1和0.6nm之间。 间隔物也在1.5特斯拉或更高,优选大于5特斯拉的磁场中退火。 该设计通过将钉扎场超过使用0.8nm厚的钌间隔物并且在约1.3特斯拉的相对低的磁场中退火的典型AP钉扎GMR和TMR传感器的三倍以上而产生意想不到的结果。

    Depositing a pinned layer structure in a self-pinned spin valve
    74.
    发明申请
    Depositing a pinned layer structure in a self-pinned spin valve 有权
    在自锁自旋阀中沉积钉扎层结构

    公开(公告)号:US20050180112A1

    公开(公告)日:2005-08-18

    申请号:US10782208

    申请日:2004-02-18

    IPC分类号: G11B5/39 H05K7/20

    摘要: The pinned layer structure in a self-pinned spin valve is deposited using a DC aligning field. The deposition of each of the Reference and Keeper layer in the pinned layer occurs within two different polarity DC aligning fields. Thus, a first portion of the Reference layer is deposited with a DC alignment field of a first polarity, i.e., either positive or negative, and a second portion of the Reference layer is deposited in a DC alignment field of opposite polarity. The Keeper layer is similarly deposited, with a first portion of the Keeper layer deposited in a first polarity DC alignment field and the second portion deposited in the opposite polarity DC alignment field. By splitting the deposition of the Reference and Keeper layers into portions using DC aligning fields the pinned layer structure is highly repeatable while providing a good thickness uniformity of the structure.

    摘要翻译: 使用直流对准场沉积自锁自旋阀中的钉扎层结构。 参考和守护层中的每一个在被钉扎层中的沉积发生在两个不同极性的直流对准场内。 因此,参考层的第一部分被沉积有第一极性的DC对准场,即正或负,并且参考层的第二部分沉积在相反极性的DC对准场中。 Keeper层类似地沉积,Keeper层的第一部分沉积在第一极性DC对准场中,而第二部分沉积在相反极性的DC对准场中。 通过使用直流对准场将参考和守恒分层的沉积分裂成部分,钉扎层结构是高度可重复的,同时提供了良好的结构厚度均匀性。

    Sunken electrical lead defined narrow track width magnetic head
    75.
    发明授权
    Sunken electrical lead defined narrow track width magnetic head 失效
    凹陷电线定义窄轨宽磁头

    公开(公告)号:US06920021B2

    公开(公告)日:2005-07-19

    申请号:US10229248

    申请日:2002-08-26

    申请人: Daniele Mauri Tao Pan

    发明人: Daniele Mauri Tao Pan

    IPC分类号: G11B5/012 G11B5/31 G11B5/39

    摘要: In fabricating the magnetic head, a first magnetic shield layer (S1) is fabricated upon a substrate base, followed by a thin first insulation layer (G1). A photoresist mask is fabricated upon the G1 layer and electrical lead recesses are milled through the G1 layer and into the S1 layer. An insulation layer is deposited into the electrical lead recesses, followed by the fabrication of electrical leads within the recesses. The photoresist is removed and a magnetoresistive (MR) sensor is subsequently fabricated on top of the G1 layer, such that portions of the MR sensor are fabricated on top of portions of the electrical leads. Hard bias elements are then fabricated at outboard edges of the MR sensor. A thin second insulation layer (G2) is fabricated on top of the MR sensor and hard bias elements, and a second magnetic shield layer (S2) is fabricated on top of the G2 layer.

    摘要翻译: 在制造磁头时,在衬底基底上制造第一磁屏蔽层(S1),随后是薄的第一绝缘层(G 1)。 在G 1层上制造光致抗蚀剂掩模,并且将电引线凹槽通过G 1层研磨并进入S1层。 绝缘层沉积到电引线凹槽中,随后在凹槽内制造电引线。 去除光致抗蚀剂,随后在G 1层的顶部上制造磁阻(MR)传感器,使得MR传感器的部分制造在电引线的部分的顶部。 然后在MR传感器的外侧边缘处制造硬偏置元件。 在MR传感器和硬偏置元件的顶部制造薄的第二绝缘层(G 2),并且在G 2层的顶部上制造第二磁屏蔽层(S 2)。

    Magnetoresistive magnetic recording head with permalloy sensor layer
deposited with substrate heating
    76.
    发明授权
    Magnetoresistive magnetic recording head with permalloy sensor layer deposited with substrate heating 失效
    具有坡莫合金传感器层的磁阻磁记录头沉积衬底加热

    公开(公告)号:US6088204A

    公开(公告)日:2000-07-11

    申请号:US348551

    申请日:1994-12-01

    摘要: A magnetoresistive sensor for use as the read sensor in magnetic recording disk drives uses a permalloy (approximate composition of Ni.sub.81,Fe.sub.19) sensor layer with a magnetoresistance coefficient significantly greater than prior art permalloy sensor layers for a range of permalloy film thicknesses. The permalloy film is deposited on a substrate, such as alumina, that is essentially non-reactive with permalloy at elevated temperatures while the substrate is heated. The permalloy films have a zero or slightly negative magnetostriction, low easy and hard axis coercivities, and a low anisotropy field. At very small film thicknesses the permalloy films formed with substrate heating exhibit an even greater percentage increase in magnetoresistance coefficient than at higher film thicknesses, thereby allowing the films to function in magnetic recording disk drive heads for use at very high linear recording densities. The precise composition of the Ni--Fe alloy forming the sensor layer can be varied slightly, depending on the film thickness, to provide a sensor layer with essentially zero or slightly negative magnetostriction.

    摘要翻译: 在磁记录盘驱动器中用作读取传感器的磁阻传感器使用坡莫合金(Ni81,Fe19)的近似组成,其磁阻系数明显大于现有技术的坡莫合金传感器层,用于一定范围的坡莫合金膜厚度。 坡莫合金膜沉积在基底上,例如氧化铝,其在加热基底的同时基本上与坡莫合金在高温下不反应。 坡莫合金膜具有零或略微负的磁致伸缩,低容易和硬轴矫顽力,以及低各向异性场。 在非常小的膜厚度下,用衬底加热形成的坡莫合金膜的磁阻系数比在较高的膜厚度上显示更大的百分比增加,从而允许膜在非常高的线性记录密度下使用的磁记录盘驱动头中起作用。 形成传感器层的Ni-Fe合金的精确组成可以根据膜厚度稍微变化,以提供基本为零或略微负的磁致伸缩的传感器层。

    Self-biased dual spin valve sensor
    77.
    发明授权
    Self-biased dual spin valve sensor 失效
    自偏双自旋阀传感器

    公开(公告)号:US5856897A

    公开(公告)日:1999-01-05

    申请号:US979815

    申请日:1997-11-26

    申请人: Daniele Mauri

    发明人: Daniele Mauri

    IPC分类号: G11B5/00 G11B5/012 G11B5/39

    摘要: A dual spin valve (DSV) magnetoresistive (MR) sensor has a free magnetic layer disposed between first and second pinned magnetic layers. The first pinned layer has two magnetic sublayers separated from each other by an antiparallel spacer. The first magnetic sublayer closer to the free layer has a magnetic moment which is smaller than the magnetic moment of the second magnetic sublayer. The net moment of the magnetic sublayers is chosen to be equal to the magnetic moment of the second pinned layer thus creating a flux closure and substantially minimizing the effect of the demagnetizing forces. By creating a flux closure and current induced magnetic fields, the first and second pinned layers' magnetization are fixed. This is in contrast with conventional dual spin valve sensors using two antiferromagnetic layers to pin the magnetization of the pinned layers.

    摘要翻译: 双自旋阀(DSV)磁阻(MR)传感器具有设置在第一和第二固定磁性层之间的自由磁性层。 第一被钉扎层具有通过反平行间隔件彼此分离的两个磁性子层。 靠近自由层的第一磁性子层具有小于第二磁性子层的磁矩的磁矩。 选择磁性子层的净矩为等于第二被钉扎层的磁矩,从而产生通量闭合并且基本上最小化去磁力的影响。 通过产生磁通闭合和电流感应磁场,第一和第二固定层的磁化是固定的。 这与使用两个反铁磁层来固定被钉扎层的磁化的常规双自旋阀传感器形成对比。

    Enhanced anti-parallel-pinned sensor using thin ruthenium spacer and high magnetic field annealing
    79.
    发明授权
    Enhanced anti-parallel-pinned sensor using thin ruthenium spacer and high magnetic field annealing 有权
    增强型反并联固定传感器采用薄钌间隔和高磁场退火

    公开(公告)号:US07848064B2

    公开(公告)日:2010-12-07

    申请号:US12172134

    申请日:2008-07-11

    IPC分类号: G11B5/39

    摘要: An anti-parallel pinned sensor is provided with a spacer that increases the anti-parallel coupling strength of the sensor. The anti-parallel pinned sensor is a GMR or TMR sensor having a pure ruthenium or ruthenium alloy spacer. The thickness of the spacer is less than 0.8 nm, preferably between 0.1 and 0.6 nm. The spacer is also annealed in a magnetic field that is 1.5 Tesla or higher, and preferably greater than 5 Tesla. This design yields unexpected results by more than tripling the pinning field over that of typical AP-pinned GMR and TMR sensors that utilize ruthenium spacers which are 0.8 nm thick and annealed in a relatively low magnetic field of approximately 1.3 Tesla.

    摘要翻译: 反平行销钉式传感器设置有增加传感器的反平行耦合强度的间隔件。 反平行钉扎传感器是具有纯钌或钌合金间隔物的GMR或TMR传感器。 间隔物的厚度小于0.8nm,优选在0.1和0.6nm之间。 间隔物也在1.5特斯拉或更高,优选大于5特斯拉的磁场中退火。 该设计通过将钉扎场超过使用0.8nm厚的钌间隔物并且在约1.3特斯拉的相对低的磁场中退火的典型AP钉扎GMR和TMR传感器的三倍以上而产生意想不到的结果。