摘要:
A combined manufacturable wafer and test device for measuring a tunneling-magnetoresistance property of a tunneling-magnetoresistance, sensor-layer structure. The combined manufacturable wafer and test device comprises a tunneling-magnetoresistance, sensor-layer structure disposed on a substrate. The combined manufacturable wafer and test device also comprises a plurality of partially fabricated tunneling-magnetoresistance sensors; at least one of the partially fabricated tunneling-magnetoresistance sensors is disposed at one of a plurality of first locations. The test device is disposed on the substrate at a second location different from the plurality of first locations. The test device allows measurement of the tunneling-magnetoresistance property of the tunneling-magnetoresistance, sensor-layer structure using a current-in-plane-tunneling technique.
摘要:
A method for manufacturing a magnetoresistive sensor that decreases the stack height of the sensor. The method includes forming a sensor structure having at its top, a Ru layer and a Ta layer over the Ru layer. An annealing process is performed to set the magnetization of the pinned layer of the sensor structure. After the annealing process has been completed and the Ta layer is no longer needed, an ion milling process is performed to remove the Ta layer.
摘要:
An anti-parallel pinned sensor is provided with a spacer that increases the anti-parallel coupling strength of the sensor. The anti-parallel pinned sensor is a GMR or TMR sensor having a pure ruthenium or ruthenium alloy spacer. The thickness of the spacer is less than 0.8 nm, preferably between 0.1 and 0.6 nm. The spacer is also annealed in a magnetic field that is 1.5 Tesla or higher, and preferably greater than 5 Tesla. This design yields unexpected results by more than tripling the pinning field over that of typical AP-pinned GMR and TMR sensors that utilize ruthenium spacers which are 0.8 nm thick and annealed in a relatively low magnetic field of approximately 1.3 Tesla.
摘要:
The pinned layer structure in a self-pinned spin valve is deposited using a DC aligning field. The deposition of each of the Reference and Keeper layer in the pinned layer occurs within two different polarity DC aligning fields. Thus, a first portion of the Reference layer is deposited with a DC alignment field of a first polarity, i.e., either positive or negative, and a second portion of the Reference layer is deposited in a DC alignment field of opposite polarity. The Keeper layer is similarly deposited, with a first portion of the Keeper layer deposited in a first polarity DC alignment field and the second portion deposited in the opposite polarity DC alignment field. By splitting the deposition of the Reference and Keeper layers into portions using DC aligning fields the pinned layer structure is highly repeatable while providing a good thickness uniformity of the structure.
摘要:
In fabricating the magnetic head, a first magnetic shield layer (S1) is fabricated upon a substrate base, followed by a thin first insulation layer (G1). A photoresist mask is fabricated upon the G1 layer and electrical lead recesses are milled through the G1 layer and into the S1 layer. An insulation layer is deposited into the electrical lead recesses, followed by the fabrication of electrical leads within the recesses. The photoresist is removed and a magnetoresistive (MR) sensor is subsequently fabricated on top of the G1 layer, such that portions of the MR sensor are fabricated on top of portions of the electrical leads. Hard bias elements are then fabricated at outboard edges of the MR sensor. A thin second insulation layer (G2) is fabricated on top of the MR sensor and hard bias elements, and a second magnetic shield layer (S2) is fabricated on top of the G2 layer.
摘要:
A magnetoresistive sensor for use as the read sensor in magnetic recording disk drives uses a permalloy (approximate composition of Ni.sub.81,Fe.sub.19) sensor layer with a magnetoresistance coefficient significantly greater than prior art permalloy sensor layers for a range of permalloy film thicknesses. The permalloy film is deposited on a substrate, such as alumina, that is essentially non-reactive with permalloy at elevated temperatures while the substrate is heated. The permalloy films have a zero or slightly negative magnetostriction, low easy and hard axis coercivities, and a low anisotropy field. At very small film thicknesses the permalloy films formed with substrate heating exhibit an even greater percentage increase in magnetoresistance coefficient than at higher film thicknesses, thereby allowing the films to function in magnetic recording disk drive heads for use at very high linear recording densities. The precise composition of the Ni--Fe alloy forming the sensor layer can be varied slightly, depending on the film thickness, to provide a sensor layer with essentially zero or slightly negative magnetostriction.
摘要:
A dual spin valve (DSV) magnetoresistive (MR) sensor has a free magnetic layer disposed between first and second pinned magnetic layers. The first pinned layer has two magnetic sublayers separated from each other by an antiparallel spacer. The first magnetic sublayer closer to the free layer has a magnetic moment which is smaller than the magnetic moment of the second magnetic sublayer. The net moment of the magnetic sublayers is chosen to be equal to the magnetic moment of the second pinned layer thus creating a flux closure and substantially minimizing the effect of the demagnetizing forces. By creating a flux closure and current induced magnetic fields, the first and second pinned layers' magnetization are fixed. This is in contrast with conventional dual spin valve sensors using two antiferromagnetic layers to pin the magnetization of the pinned layers.
摘要:
A magnetoresistive (MR) sensor comprising a first and a second thin film layer of a magnetic material separated by a thin film layer of a non-magnetic metallic material. The first ferromagnetic layer is magnetically soft. The magnetization direction of the first layer of magnetic material is set substantially perpendicular to the magnetization of the second layer of magnetic material at zero applied field, and the magnetization direction of the second layer of magnetic material is fixed. A current flow is produced through the MR sensor, and the variations in voltage across the MR sensor are sensed due to changes in resistance of the MR sensor produced by rotation of the magnetization in the first layer of magnetic material as a function of the magnetic field being sensed. The variation of the resistance with the angle between the magnetizations of the first and second layers of magnetic material has been defined as the spin valve (SV) effect. It is also shown that, by a suitable direction of the current with respect to the fixed magnetization, the (SV) magnetoresistance can be added constructively to the usual anisotropic magnetoresistance.
摘要:
An anti-parallel pinned sensor is provided with a spacer that increases the anti-parallel coupling strength of the sensor. The anti-parallel pinned sensor is a GMR or TMR sensor having a pure ruthenium or ruthenium alloy spacer. The thickness of the spacer is less than 0.8 nm, preferably between 0.1 and 0.6 nm. The spacer is also annealed in a magnetic field that is 1.5 Tesla or higher, and preferably greater than 5 Tesla. This design yields unexpected results by more than tripling the pinning field over that of typical AP-pinned GMR and TMR sensors that utilize ruthenium spacers which are 0.8 nm thick and annealed in a relatively low magnetic field of approximately 1.3 Tesla.
摘要:
An improved formulation for free layers in MTJ sensors is disclosed. Optimized results of the prior art suggest free layer iron concentrations less than 20 atomic % give the best performance. The present invention discloses improved TMR ratio, Hce, and λ performance for high free layer iron concentrations between about 70 and 91.5 atomic %, when compared to the prior art.