Abstract:
Devices and methods for endolumenally manipulating stomach fundus tissue alter the function of nearby nerves. The altered function of the nerves interacts with the cardiopulmonary system to cause a substantially permanent reduction in blood pressure. The altered nerve function may also treat heart disease as well. This application also relates to devices and methods for endolumenally manipulating stomach tissue to alter hormone production from cells associated with stomach tissue, providing a therapeutic effect in treating hypertension and heart disease, not conventionally associated with the stomach.
Abstract:
Methods and apparatus for securing and deploying tissue anchors are described herein. A tissue manipulation assembly is pivotably coupled to the distal end of a tubular member. A reconfigurable launch tube is also pivotably coupled to the tissue manipulation assembly, which may be advanced through a shape-lockable endoscopic device, a conventional endoscope, or directly by itself into a patient. A second tool can be used in combination with the tissue manipulation assembly to engage tissue and manipulate the tissue in conjunction with the tissue manipulation assembly. A deployment assembly is provided for securing engaged tissue via one or more tissue anchors, the deployment assembly also being configured to disengage the anchors endoluminally or laparoscopically by applying thermal energy through at least one suture cutting element disposed along the deployment assembly.
Abstract:
A surgical access device includes a single valve that forms a seal with the body wall and provides an access channel into a body cavity. The valve has properties for creating a zero seal in the absence of an instrument as well as an instrument seal with instruments having a full range of instrument diameter. The valve can include a gel and preferably an ultragel comprised of an elastomer and an oil providing elongation greater than 1000 percent and durometer less than 5 Shore A. The single valve can be used as a hand port where the instrument comprises the arm of a surgeon, thereby providing hand access into the cavity.
Abstract:
A surgical access device includes an access seal adapted to be disposed within an incision within an abdominal wall. The access seal has an external flange adapted to be disposed external to the abdominal wall and an internal flange adapted to be disposed internal to the abdominal wall. The access seal with flanges is formed monolithically. There are access channels through the access seal. The access channels span the thickness of the abdominal wall and form working channels between a location external to the abdominal wall and a location internal to the abdominal wall. The access seal is formed of an elastomeric material adapted to conform to a surface of an instrument inserted through the working channel to form an instrument seal along a length spanning the thickness of the abdominal wall. The elastomeric material is adapted to form an abdominal seal within the abdominal wall.
Abstract:
Endoscopic instrument management systems are described herein which allow one or more operators to manage multiple different instruments utilized in endoscopic procedures. In one aspect, responsibility for instrumentation management between one or more operators may be configured such that a first set of instruments is controlled by a primary operator and a second set of instruments is controlled by a secondary operator. The division of instrumentation may be facilitated by the use of separated instrumentation platforms or a single platform which separates each instrument for use by the primary operator. Such platforms may be configured as trays, instrument support arms, multi-instrument channels, as well as rigidized portions of instruments to facilitate its handling, among others. In another aspect, one or more plastically deformable instrument manifolds are provided to guide flexible endoscopic instruments into and through an endoscopic access device.
Abstract:
A surgical access device includes a single valve that forms a seal with the body wall and provides an access channel into a body cavity. The valve has properties for creating a zero seal in the absence of an instrument as well as an instrument seal with instruments having a full range of instrument diameter. The valve can include a gel and preferably an ultragel comprised of an elastomer and an oil providing elongation greater than 1000 percent and durometer less than 5 Shore A. The single valve can be used as a hand port where the instrument comprises the arm of a surgeon, thereby providing hand access into the cavity.A method for making the surgical access device includes the combining of a gelling agent with an oil, preferably in a molding process. A method for using the device includes steps for creating an opening with the instrument. In a particular process, an organ can be removed from the body cavity through the single valve to create an organ seal while the organ is addressed externally of the body cavity. The valve and method are particularly adapted for laparoscopic surgery wherein the abdominal cavity is insufflated with a gas thereby requiring the zero seal, the instrument seal, and the organ seal in various procedures.
Abstract:
A ligature delivery device includes a control member, an elongated shaft, and an end effector attached to the distal end of the elongated shaft. An activation mechanism provides an user-operable connection between the control member and the end effector. In several embodiments, the end effector includes a reverse grasping mechanism. Several embodiments of ligature devices are adapted to be deployed endoscopically and/or translumenally using the reverse-grasping delivery device.
Abstract:
A tissue grasping apparatus includes a control member, an elongated shaft, and a tissue grasping member attached to the distal end of the elongated shaft. An activation mechanism provides an user-operable connection between the control member and the tissue grasping member. In an embodiment, the tissue grasping member includes a pair of jaws configured to open to an included angle between the jaws of 180 degrees or more. In an embodiment, the activation mechanism includes a flexible drive wire attached to the penetrating member.
Abstract:
A surgical wound retractor is adapted to dilate a wound to a desired diameter. The retractor includes first and second rings, each having a diameter greater than that desired for the wound. The first and second rings are adapted for disposition interiorly and exteriorly of the wound, respectively. A plurality of retraction elements is disposed in a generally cylindrical relationship between the first and second rings and extends through the wound to exert a radial retraction force on the wound that is dependent on the distance separating the first and second rings. Retraction elements, both distensible and non-distensible, are contemplated with appropriate attachment elements at the rings to provide for variations in the retraction force. With a suitable retraction sleeve, a third ring can be provided to form a circumferential retainer to vary the retraction force. Rings can also be made inflatable or self-expanding to vary the retraction force.
Abstract:
An access device particularly adapted for use in laparoscopic surgery facilitates access with instruments, such as the hand of the surgeon, across a body wall and into a body cavity. The device can be formed of a gel material having properties for forming a zero seal, or an instrument seal with a wide range of instrument diameters. The gel material can be translucent facilitating illumination and visualization of the surgical site through the access device.