摘要:
Generally, a method or apparatus for tomographically imaging a sample, such as a tumor of a patient, using positively charged particles positions n two-dimensional detector arrays on n surfaces of a scintillation material or scintillator, respectively. Resultant from energy transfer from the positively charged particles, secondary photons are emitted from the scintillation material and detected by the plurality of two-dimensional detector arrays, where each detector array images the scintillation material. Combining signals from the plurality of two-dimensional detector arrays, the path, position, energy, and/or state of the positively charged particle beam as a function of time and/or rotation of the patient relative to the positively charged particle beam is determined and used in tomographic reconstruction of an image of the sample or the tumor.
摘要:
The invention comprises a method for packaging a dispensable substance, such as a food product, whipped cream, a hydrocarbon, or an air freshener, the method comprising the steps of: placing a first product component into a container, the container comprising a valve dispensing port; adding a second product component into the container, the second product component comprising at least one of: (1) a solid form of the second product component and (2) a liquid form of the second product component; sealing the container; and warming, after the step of sealing, the second product component in the container at least ten degrees Celsius, where the step of warming results in a phase change of all of the second product component into a gas phase, at least a portion of the gas phase of the second product component dissolving into the first product component to form the dispensable substance.
摘要:
The invention comprises a method and apparatus for using a multi-layer multi-color scintillation based detector element to image a tumor of a patient using a process of determining residual energies of positively charged particles after passing through the patient, the process comprising the steps of: (1) transmitting the positively charged particles at known energies through the patient and into a multi-layer detector element; (2) detecting first and second secondary photons, resultant from passage of the positively charged particles, respectively from a first layer of a first scintillation material and a second layer of a second scintillation material at two respective layer depths, where the first wavelength range differs from the second wavelength range; (4) determining residual energies of the positively charged particles, using output from the step of detecting; and (5) relating the residual energies to body densities to generate an image.
摘要:
The invention comprises a method and apparatus for imaging a tumor of a patient using one or more imaging systems positionable about the tumor and treating the tumor using positively charged particles, such as: (1) using a rotatable gantry support to support and rotate a section of a positively charged particle beam transport line about a rotation axis and a tumor of a patient; (2) using a rotatable and optionally extendable secondary support to support, circumferentially position, and laterally position a primary and optional secondary imaging system about the tumor; (3) image the tumor using the primary and optional secondary imaging system as a function of rotation and/or translation of the secondary support; and (4) treat, optionally concurrently with imaging, the tumor using the positively charged particles as a function of circumferential position of the section of the charged particle beam about the tumor.
摘要:
The invention comprises a method and apparatus for treating a tumor with positively charged particles, comprising the steps of: (1) transporting the positively charged particles sequentially from an accelerator, along a beam transport path, through a nozzle system, and along a treatment beam path and (2) while scanning the treatment beam path along each of a set of vectors for treating the tumor, on average for the set of vectors, intentionally deviating the treatment beam path from a current vector of the set of vectors off of the current vector by at least one-eighth of a treatment beam diameter at least once for every twenty movements of the treatment beam.
摘要:
The invention comprises a method and apparatus for treating a tumor with protons using multiple beamline positions not having an isocenter, including the steps of: (1) delivering the protons from a synchrotron along a redirectable beam transport path to yield a plurality of incident vectors, each of the plurality of incident vectors directed toward the treatment room and (2) redirecting the protons traveling along each of the plurality of incident vectors, with an output nozzle, to the tumor, where a first vector, of the plurality of incident vectors, comprises a first direction intersecting the tumor and where a second vector, of the plurality of incident vectors, comprises a second direction passing by the tumor without entering the tumor. The step of redirecting directs the protons traveling along the first and second incident vectors, respectively, to a first and second path intersecting a front and the back of the tumor.
摘要:
The invention comprises a system for redundantly determining the state of a charged particle beam, such as beam position, direction, energy, and/or intensity. For example, the charged particle beam state is determined: (1) in an extraction system from a synchrotron, (2) in a charged particle beam transport path, and/or (3) at or about a patient undergoing charged particle cancer therapy using one or more film layers designed to emit photons upon passage of a charged particle beam, which yields information on position and/or intensity of the charged particle beam. The emitted photons are used to calculate position, direction, and/or intensity of the treatment beam in imaging and/or during tumor treatment.
摘要:
The invention comprises a system for controlling a charged particle beam shape and direction relative to a controlled and dynamically positioned patient and/or an imaging surface, such as a scintillation plate of a tomography system and/or a first two-dimensional imaging system coupled to a second two-dimensional imaging system. Multiple interlinked beam/patient/imaging control stations allow safe zone operation and clear interaction with the charged particle beam system and the patient. Both treatment and imaging are facilitated using automated sequences controlled with a work-flow control system.
摘要:
The invention comprises a system for using common injector, accelerator, beam transport, and/or imaging system elements for both imaging, such as tomographic imaging, and positively charged particle cancer therapy. For example, a common output nozzle of both a tomographic imaging system and the charged particle cancer therapy system is maintained on an opposite side of the patient from an imaging surface, such as a detection plate and/or a scintillation plate, where the imaging surface is used in tomographic imaging and/or during cancer treatment with the positively charged particles to confirm position and/or orientation of the tumor. Common beam state determination systems, such as charged particle position, direction, energy, and/or intensity determination systems are used to enhance both the imaging and cancer treatment system.
摘要:
A Faraday cup structure for use with a processing tool. The cup structure has a conductive strike plate coupled to a circuit for monitoring ions striking the strike plate to obtain an indication of the ion beam current. The electrically conductive strike plate is fronted by a mask for dividing an ion beam intercepting cross section into regions or segments. The mask including walls extending to the strike plate for impeding ions reaching the sensor and particles dislodged from the sensor from entering into the evacuated region of the processing tool.